Full metadata record

DC Field Value Language
dc.contributor.authorChoi, Suyeon-
dc.contributor.authorHong, Doosun-
dc.contributor.authorYang, Hyunwoo-
dc.contributor.authorRoh, Jeonghan-
dc.contributor.authorYoo, Jaeyoung-
dc.contributor.authorLee, Changsoo-
dc.contributor.authorKim, Minjoong-
dc.contributor.authorYun, Young Hwa-
dc.contributor.authorBang, Kihoon-
dc.contributor.authorKim, Jong Min-
dc.contributor.authorCho, Eunae-
dc.contributor.authorHan, Sang Soo-
dc.contributor.authorKim, Donghun-
dc.contributor.authorLee, Hyuck Mo-
dc.date.accessioned2024-08-22T08:00:07Z-
dc.date.available2024-08-22T08:00:07Z-
dc.date.created2024-08-22-
dc.date.issued2024-08-
dc.identifier.issn2380-8195-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/150467-
dc.description.abstractAttaining the high durability of supported metal catalysts in heterogeneous catalysis remains a significant challenge. Here, we introduce a mixed tantalum oxide-carbon support for an oxygen reduction reaction catalyst in alkaline fuel cells, aiming to address the degradation arising from suboptimal metal-support interactions. The composite support, conceptualized as a heteroenergetic support, comprises two distinct components exhibiting substantially disparate affinities for metal nanoparticles (NPs). This unique configuration ensures the effective stabilization of the metal NPs on the support. The Au-doped Pd NPs on the mixed tantalum oxide-carbon support exhibit fully sustained mass activity even after a 10000-cycle accelerated durability test. This exceptional durability is ascribed to the effective suppression of the particle agglomerations, as elucidated through transmission electron microscopy and X-ray photoelectron spectroscopy. Our study highlights the efficacy of a heteroenergetic support as a compelling approach for achieving ultradurability in catalytic operations and indicates the broad applicability of this strategy for diverse reactions.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.titleEnhancing Fuel Cell Durability with Heteroenergetic TaOx-Carbon Support-
dc.typeArticle-
dc.identifier.doi10.1021/acsenergylett.4c01946-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Energy Letters-
dc.citation.titleACS Energy Letters-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.scopusid2-s2.0-85200554063-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryElectrochemistry-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaElectrochemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusOXYGEN REDUCTION REACTION-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusSTABILITY-
dc.subject.keywordPlusPLATINUM-
dc.subject.keywordPlusCATALYSTS-
dc.subject.keywordPlusELECTROCATALYST-
dc.subject.keywordPlusSIZE-
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE