Full metadata record

DC Field Value Language
dc.contributor.authorHam, Seonggil-
dc.contributor.authorJang, Jingon-
dc.contributor.authorKoo, Dohyong-
dc.contributor.authorGi, Sanggyun-
dc.contributor.authorKim, Dowon-
dc.contributor.authorJang, Seonghoon-
dc.contributor.authorKim, Nam Dong-
dc.contributor.authorBae, Sukang-
dc.contributor.authorLee, Byunggeun-
dc.contributor.authorLee, Chul-Ho-
dc.contributor.authorWang, Gunuk-
dc.date.accessioned2024-08-23T06:30:05Z-
dc.date.available2024-08-23T06:30:05Z-
dc.date.created2024-08-22-
dc.date.issued2024-06-
dc.identifier.issn2211-2855-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/150474-
dc.description.abstractNovel structures for synaptic devices and innovative array configurations are crucial for implementing fast and energy-efficient neuromorphic electronics. We introduce a three-terminal vertical organic ferroelectric barristor equipped with synaptic functions based on Schottky barrier height modulation to implement a neural network with parallel concurrent execution. The barristor can be extended to a diagonal neural network array while sustaining a crossbar array with nondestructive cell programming given the vertical stacking of layered gate line patterning on top. The array enables fast and energy-efficient operation of a diagonal convolutional neural network (CNN) that performs simultaneous weight update of cells sharing a kernel matrix. One-step convolution and pooling can be achieved, omitting sequential convolution for extracting and storing feature maps. The energy for vector-matrix multiplication on the MNIST and Clothes datasets using the diagonal CNN can be reduced by 75.80% and 71.79%, respectively, compared with the use of a conventional CNN structure while reducing the number of image sliding operations to one-fourth and achieving similar recognition accuracy of similar to 91.03%.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleArtificial neuromodulator-synapse mimicked by a three-terminal vertical organic ferroelectric barristor for fast and energy-efficient neuromorphic computing-
dc.typeArticle-
dc.identifier.doi10.1016/j.nanoen.2024.109435-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNano Energy, v.124-
dc.citation.titleNano Energy-
dc.citation.volume124-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001289713800001-
dc.identifier.scopusid2-s2.0-85187790687-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusCONVOLUTIONAL NEURAL-NETWORKS-
dc.subject.keywordPlusDEVICE-
dc.subject.keywordPlusARRAY-
dc.subject.keywordAuthorOrganic artificial synapse-
dc.subject.keywordAuthorNeuromorphic computing-
dc.subject.keywordAuthorConvolution neural network-
dc.subject.keywordAuthorBarristor-
dc.subject.keywordAuthorOrganic ferroelectric material-
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE