Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ham, Seonggil | - |
dc.contributor.author | Jang, Jingon | - |
dc.contributor.author | Koo, Dohyong | - |
dc.contributor.author | Gi, Sanggyun | - |
dc.contributor.author | Kim, Dowon | - |
dc.contributor.author | Jang, Seonghoon | - |
dc.contributor.author | Kim, Nam Dong | - |
dc.contributor.author | Bae, Sukang | - |
dc.contributor.author | Lee, Byunggeun | - |
dc.contributor.author | Lee, Chul-Ho | - |
dc.contributor.author | Wang, Gunuk | - |
dc.date.accessioned | 2024-08-23T06:30:05Z | - |
dc.date.available | 2024-08-23T06:30:05Z | - |
dc.date.created | 2024-08-22 | - |
dc.date.issued | 2024-06 | - |
dc.identifier.issn | 2211-2855 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/150474 | - |
dc.description.abstract | Novel structures for synaptic devices and innovative array configurations are crucial for implementing fast and energy-efficient neuromorphic electronics. We introduce a three-terminal vertical organic ferroelectric barristor equipped with synaptic functions based on Schottky barrier height modulation to implement a neural network with parallel concurrent execution. The barristor can be extended to a diagonal neural network array while sustaining a crossbar array with nondestructive cell programming given the vertical stacking of layered gate line patterning on top. The array enables fast and energy-efficient operation of a diagonal convolutional neural network (CNN) that performs simultaneous weight update of cells sharing a kernel matrix. One-step convolution and pooling can be achieved, omitting sequential convolution for extracting and storing feature maps. The energy for vector-matrix multiplication on the MNIST and Clothes datasets using the diagonal CNN can be reduced by 75.80% and 71.79%, respectively, compared with the use of a conventional CNN structure while reducing the number of image sliding operations to one-fourth and achieving similar recognition accuracy of similar to 91.03%. | - |
dc.language | English | - |
dc.publisher | Elsevier BV | - |
dc.title | Artificial neuromodulator-synapse mimicked by a three-terminal vertical organic ferroelectric barristor for fast and energy-efficient neuromorphic computing | - |
dc.type | Article | - |
dc.identifier.doi | 10.1016/j.nanoen.2024.109435 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | Nano Energy, v.124 | - |
dc.citation.title | Nano Energy | - |
dc.citation.volume | 124 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 001289713800001 | - |
dc.identifier.scopusid | 2-s2.0-85187790687 | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Physical | - |
dc.relation.journalWebOfScienceCategory | Nanoscience & Nanotechnology | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.relation.journalWebOfScienceCategory | Physics, Applied | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.relation.journalResearchArea | Physics | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | CONVOLUTIONAL NEURAL-NETWORKS | - |
dc.subject.keywordPlus | DEVICE | - |
dc.subject.keywordPlus | ARRAY | - |
dc.subject.keywordAuthor | Organic artificial synapse | - |
dc.subject.keywordAuthor | Neuromorphic computing | - |
dc.subject.keywordAuthor | Convolution neural network | - |
dc.subject.keywordAuthor | Barristor | - |
dc.subject.keywordAuthor | Organic ferroelectric material | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.