Full metadata record

DC Field Value Language
dc.contributor.authorYoona, H. G.-
dc.contributor.authorLeea, D. B.-
dc.contributor.authorParka, S. M.-
dc.contributor.authorChoib, J. W.-
dc.contributor.authorKwon, H. Y.-
dc.contributor.authorWon, C.-
dc.date.accessioned2024-08-29T06:30:05Z-
dc.date.available2024-08-29T06:30:05Z-
dc.date.created2024-08-29-
dc.date.issued2024-12-
dc.identifier.issn0010-4655-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/150521-
dc.description.abstractThe phase transition phenomenon is an important research topic in various physical studies. However, it is difficult to define the order parameters in many complex systems involving self-organized structures. We propose a method to define order parameters using a variational autoencoder network. To demonstrate these capabilities, we trained a deep learning network with a dataset composed of spin configurations in a chiral magnetic system at various temperatures. It removes thermal fluctuations from the input data and leaves the remaining structural information with a spin magnitude. We define an order parameter with magnitude of output spins and compare the results with those of conventional analysis. The comparison indicates similar results. Using the order parameter, the thermal properties of the chiral magnetic system were investigated by varying the physical parameters and data size.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleMelting phenomena of self-organized magnetic structures investigated by variational autoencoder-
dc.typeArticle-
dc.identifier.doi10.1016/j.cpc.2024.109329-
dc.description.journalClass1-
dc.identifier.bibliographicCitationComputer Physics Communications, v.305-
dc.citation.titleComputer Physics Communications-
dc.citation.volume305-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001291732100001-
dc.identifier.scopusid2-s2.0-85200894392-
dc.relation.journalWebOfScienceCategoryComputer Science, Interdisciplinary Applications-
dc.relation.journalWebOfScienceCategoryPhysics, Mathematical-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusPHASE-TRANSITIONS-
dc.subject.keywordPlusFERROMAGNETISM-
dc.subject.keywordAuthorSpontaneous symmetry breaking-
dc.subject.keywordAuthorPhase transition-
dc.subject.keywordAuthorOrder parameter-
dc.subject.keywordAuthorCritical temperature-
dc.subject.keywordAuthorMagnetism-
dc.subject.keywordAuthorDeep learning-
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE