Full metadata record

DC Field Value Language
dc.contributor.authorJo, Yooyeon-
dc.contributor.authorNoh, Gichang-
dc.contributor.authorPark, Eunpyo-
dc.contributor.authorLee, Dae Kyu-
dc.contributor.authorJeong, Yeonjoo-
dc.contributor.authorWi, Heerak-
dc.contributor.authorKwak, Joon Young-
dc.date.accessioned2024-09-06T06:00:11Z-
dc.date.available2024-09-06T06:00:11Z-
dc.date.created2024-09-05-
dc.date.issued2024-10-
dc.identifier.issn0960-0779-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/150550-
dc.description.abstractArtificial synaptic devices utilizing nonvolatile memristors with 2D materials show potential for neuromorphic computing systems due to their intriguing electrical properties, simple structure, and capability to emulate biological synaptic behaviors. Here, we fabricated nonvolatile memristors based on 2D multilayer hBN film and demonstrated their analog memory performance along with biological synaptic characteristics, including paired- pulse facilitation and depression (PPF and PPD), and synaptic plasticity. We utilized different voltage scheme algorithms to analyze the impact of synaptic functions on image classification tasks across various pattern datasets through simulations. Our findings reveal that pattern recognition outcomes varied due to the modulation of synaptic plasticity by the applied voltage schemes. We also investigated the relationship between conductance update variations and classification accuracy to highlight the significance of optimized synaptic plasticity in improving image recognition capabilities in large-scale neural networks. Our experimental results contribute to the development of high-performance neuromorphic computing for diverse pattern classification tasks using artificial synaptic devices based on 2D hBN.-
dc.languageEnglish-
dc.publisherPergamon Press Ltd.-
dc.titleEffects of voltage schemes on the conductance modulation of artificial synaptic device based on 2D hBN memristor: Its applications for pattern classifications-
dc.typeArticle-
dc.identifier.doi10.1016/j.chaos.2024.115390-
dc.description.journalClass1-
dc.identifier.bibliographicCitationChaos, Solitons & Fractals, v.187-
dc.citation.titleChaos, Solitons & Fractals-
dc.citation.volume187-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001297606500001-
dc.identifier.scopusid2-s2.0-85201375258-
dc.relation.journalWebOfScienceCategoryMathematics, Interdisciplinary Applications-
dc.relation.journalWebOfScienceCategoryPhysics, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Mathematical-
dc.relation.journalResearchAreaMathematics-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlus2-DIMENSIONAL MATERIALS-
dc.subject.keywordPlusCROSSBAR ARRAYS-
dc.subject.keywordAuthor2D materials-
dc.subject.keywordAuthorNonvolatile memristor-
dc.subject.keywordAuthorArtificial synaptic device-
dc.subject.keywordAuthorSynaptic plasticity-
dc.subject.keywordAuthorPattern classification-
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE