Full metadata record

DC Field Value Language
dc.contributor.authorGu, Ji-Woo-
dc.contributor.authorKim, Jongyoun-
dc.contributor.authorGo, Myeong-Seok-
dc.contributor.authorJung, Hyeonwoo-
dc.contributor.authorHwang, Youngjun-
dc.contributor.authorPark, Jaehyoung-
dc.contributor.authorKang, Byeongjae-
dc.contributor.authorKim, Do-Won-
dc.contributor.authorAhn, Seokhoon-
dc.contributor.authorLim, Jae Hyuk-
dc.contributor.authorLee, Youngu-
dc.date.accessioned2024-09-14T06:30:12Z-
dc.date.available2024-09-14T06:30:12Z-
dc.date.created2024-09-13-
dc.date.issued2024-10-
dc.identifier.issn1385-8947-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/150581-
dc.description.abstractBiological systems provide innovative designs for electronic devices, optimizing network configurations for highperformance signal transmission with minimal energy consumption. The brain, as one of the most complex biological structures, demonstrates efficient network design through the multiscale radial networks of neurons and astrocytes. Emulating these brain networks offers a blueprint for the development of ultrasensitive pressure sensors for electronic skin, aiming to provide a more intuitive and sensitive mode of interaction between humans and machines. Herein, we propose a neuromorphic percolative network inspired by neuron-astrocyte interactions for ultrasensitive pressure sensors employing metal microdendrites and nanostars. Electromechanical investigation through representative volume elements simulation reveals that the optimized arrangement of microdendrites and nanostars in the neuromorphic percolative system enhances the percolation threshold and probability. Following these simulation results, we developed a neuromorphic percolative polyurethane (NP-PU) matrix utilizing the metal microdendrite-nanostar networks. The augmented quantum tunneling effect in the NPPU matrix was investigated through electrochemical impedance spectroscopy and capacitance analysis. The fabricated piezoresistive pressure sensor with the NP-PU matrix shows ultrahigh sensitivity (160.3 kPa(-1)) at a low pressure range and a low limit of detection resolution (4 Pa), enabled by multi-channel quantum tunneling in the metal particle networks. Furthermore, the sensor maintains excellent mechanical flexibility and high optical transparency (75.4 %), improving its efficacy in applications like electronic skin and force touch panel. Our study highlights the potential of leveraging biological system-inspired network designs for crafting advanced electronic devices.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleNeuron-astrocyte interaction-inspired percolative networks with metal microdendrites and nanostars for ultrasensitive and transparent electronic skins-
dc.typeArticle-
dc.identifier.doi10.1016/j.cej.2024.155175-
dc.description.journalClass1-
dc.identifier.bibliographicCitationChemical Engineering Journal, v.498-
dc.citation.titleChemical Engineering Journal-
dc.citation.volume498-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001302264000001-
dc.identifier.scopusid2-s2.0-85202293099-
dc.relation.journalWebOfScienceCategoryEngineering, Environmental-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusPRESSURE SENSORS-
dc.subject.keywordAuthorNeuron-astrocyte network-
dc.subject.keywordAuthorBio-inspired structure-
dc.subject.keywordAuthorPiezoresistive pressure sensor-
dc.subject.keywordAuthorElectronic skin-
dc.subject.keywordAuthorTransparent electronics-
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE