Full metadata record

DC Field Value Language
dc.contributor.authorChae, Sang Youn-
dc.contributor.authorYoon, Noyoung-
dc.contributor.authorJun, Minki-
dc.contributor.authorHur, Sung Hyun-
dc.contributor.authorLee, Myeongjae-
dc.contributor.authorKim, Bongsoo-
dc.contributor.authorKim, Jin Young-
dc.contributor.authorPark, Eun Duck-
dc.contributor.authorPark, Jong Hyeok-
dc.contributor.authorJoo, Oh Shim-
dc.date.accessioned2024-09-14T07:00:05Z-
dc.date.available2024-09-14T07:00:05Z-
dc.date.created2024-09-13-
dc.date.issued2024-08-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/150591-
dc.description.abstractPhotoelectrochemical (PEC) cells offer a promising method for producing green hydrogen through the splitting of water using solar energy. However, the cost-effective synthesis of highly crystalline p-type semiconductor materials for PEC cells remains a significant challenge for industrial applications. Herein, a CuInS2 photoelectrode is fabricated using a scalable and economical wet chemical spin-coating technique. To enhance the crystallinity and photoelectrochemical activity of the photoelectrode, the grain size is precisely controlled by adjusting the atomic ratio, thickness, morphology, and Ag doping. Evaluating a novel growth mechanism of CuInS2 from Cu-In-O reveals that Ag doping significantly promotes grain growth. Consequently, the CuInS2 photocathode achieves one of the highest photoelectrochemical activities (-9.8 mA cm(-2) at 0 V-RHE) reported for CuInS2 photoelectrodes synthesized via wet chemical methods. Bias-free water splitting is achieved using a CuInS2-based photoelectrode in a photovoltaic-PEC cell configuration. These results highlight the potential of CuInS2, prepared through wet chemical methods, for cost-effective photoelectrochemical water splitting.-
dc.languageEnglish-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.titleInvestigation of Grain Growth in Chalcopyrite CuInS2 Photoelectrodes Synthesized under Wet Chemical Conditions for Bias-Free Photoelectrochemical Water Splitting-
dc.typeArticle-
dc.identifier.doi10.1002/solr.202400518-
dc.description.journalClass1-
dc.identifier.bibliographicCitationSolar RRL-
dc.citation.titleSolar RRL-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.scopusid2-s2.0-85201939017-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusTO-HYDROGEN CONVERSION-
dc.subject.keywordPlusNOBLE-METAL COCATALYST-
dc.subject.keywordPlusTANDEM CELL-
dc.subject.keywordPlusEFFICIENT-
dc.subject.keywordPlusPHOTOCATHODES-
dc.subject.keywordPlusPHOTOANODE-
dc.subject.keywordPlusOXIDE-
dc.subject.keywordPlusCU-
dc.subject.keywordPlusSTANDALONE-
dc.subject.keywordPlusNANOSHEETS-
dc.subject.keywordAuthorCuInS2-
dc.subject.keywordAuthorgreen hydrogen-
dc.subject.keywordAuthorphotoelectrochemical cells-
dc.subject.keywordAuthorphotovoltaic-photoelectrochemical cells-
dc.subject.keywordAuthorspin coating-
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE