Full metadata record

DC Field Value Language
dc.contributor.authorShukla, Vivek-
dc.contributor.authorHan, Sung Ju-
dc.contributor.authorHa, Taejun-
dc.contributor.authorPadhee, Satya Prakash-
dc.contributor.authorSuh, Jin-Yoo-
dc.contributor.authorCho, Young Whan-
dc.contributor.authorLee, Young-Su-
dc.date.accessioned2024-09-19T02:00:21Z-
dc.date.available2024-09-19T02:00:21Z-
dc.date.created2024-09-19-
dc.date.issued2024-08-
dc.identifier.issn0363-907X-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/150625-
dc.description.abstractIn the present study, we aimed to destabilize the Ti-Al system with nonmetallic oxygen. The synthesis of alpha-(Ti, Al)[O] starting from TiO2, Ti, and Al was carried out through the arc melting method, resulting in three different oxygen content levels, 3.4, 10, and 20 at%. The room temperature activation of alpha-(Ti, Al)[O] was not successful, and the activation was performed at 300 degrees C under 5 MPa H2 pressure. The structural changes after hydrogenation (maximum absorption capacity of 3.74 wt% hydrogen) arose from the transformation of alpha-(Ti, Al)[O] to cubic (Ti, Al)[O]Hx (c-(Ti, Al)[O]Hx); nonetheless, they recovered their original lattice parameters, which are meaningfully larger than those of alpha-Ti, after dehydrogenation. The hydrogen storage capacities for various alpha-(Ti, Al)[O] compositions generally decreased with increasing oxygen (3.4 and 10 at%) and aluminum content in the alloy. In contrast, for the compositions with a higher oxygen content of 20 at%, the hydrogen storage capacity slightly increased as the Al concentration increased: Ti0.790Al0.010O0.200 absorbed 2.91 wt% hydrogen, whereas Ti0.767Al0.033O0.200 absorbed 3.04 wt% hydrogen. The thermogravimetric analysis showed that samples with 20 at% O released hydrogen at lower temperatures even though the major phase after hydrogenation is c-(Ti, Al)[O]Hx regardless of the oxygen content.-
dc.languageEnglish-
dc.publisherJohn Wiley & Sons Inc.-
dc.titleOptimizing Hydrogen Storage Pathways in Ti-Al Alloys through Controlled Oxygen Addition-
dc.typeArticle-
dc.identifier.doi10.1155/2024/2216181-
dc.description.journalClass1-
dc.identifier.bibliographicCitationInternational Journal of Energy Research, v.2024-
dc.citation.titleInternational Journal of Energy Research-
dc.citation.volume2024-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001307252800002-
dc.identifier.scopusid2-s2.0-85203653008-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryNuclear Science & Technology-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaNuclear Science & Technology-
dc.type.docTypeArticle-
dc.subject.keywordPlusTITANIUM-
dc.subject.keywordPlusABSORPTION-
dc.subject.keywordPlusHYDRIDES-
dc.subject.keywordPlusDESORPTION PROPERTIES-
dc.subject.keywordPlusLATTICE-CONSTANTS-
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE