Full metadata record

DC Field Value Language
dc.contributor.authorSun, Changhyo-
dc.contributor.authorSriboriboon, Panithan-
dc.contributor.authorHan, Junghun-
dc.contributor.authorKo, Sang-Jin-
dc.contributor.authorLee, Seung-Yong-
dc.contributor.authorHeo, Yooun-
dc.contributor.authorShim, Jae-Hyeok-
dc.contributor.authorYang, Sejung-
dc.contributor.authorKim, Jung-Gu-
dc.contributor.authorKim, Yunseok-
dc.date.accessioned2024-10-02T09:30:18Z-
dc.date.available2024-10-02T09:30:18Z-
dc.date.created2024-10-02-
dc.date.issued2024-11-
dc.identifier.issn0010-938X-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/150691-
dc.description.abstractA deep understanding of corrosion behavior is critical for improving steel durability and reliability. Typically, it requires significant experimental effort and extensive measurements over a long period of time. Therefore, exploring the time-dependent corrosion at an early stage to predict its progress at a later stage can effectively understand it. In this study, we quantitatively predicted later stages of local corrosion behavior using deep learning methods based on the early stage topographical information. Furthermore, we predicted and visualized the formation, growth, and accumulation of the particle-like oxides. Our proposed method can be extended to other types of corrosion-resistant electrochemical materials.-
dc.languageEnglish-
dc.publisherPergamon Press Ltd.-
dc.titlePrediction of quantitative in-situ local corrosion via deep learning-
dc.typeArticle-
dc.identifier.doi10.1016/j.corsci.2024.112431-
dc.description.journalClass1-
dc.identifier.bibliographicCitationCorrosion Science, v.240-
dc.citation.titleCorrosion Science-
dc.citation.volume240-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001310829800001-
dc.identifier.scopusid2-s2.0-85203253883-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusDUAL-PHASE STEEL-
dc.subject.keywordPlusDEFORMATION-
dc.subject.keywordPlusDIFFRACTION-
dc.subject.keywordPlusENVIRONMENT-
dc.subject.keywordPlusMICROSCOPY-
dc.subject.keywordPlusBEHAVIOR-
dc.subject.keywordPlusFERRITE-
dc.subject.keywordAuthorAtomic force microscopy-
dc.subject.keywordAuthorCorrosion-
dc.subject.keywordAuthorQuantitative topography-
dc.subject.keywordAuthorDeep learning-
dc.subject.keywordAuthorAdvanced high strength steel-
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE