Full metadata record

DC Field Value Language
dc.contributor.author권용진-
dc.contributor.author강예찬-
dc.contributor.author서민경-
dc.contributor.author조정희-
dc.contributor.author박성식-
dc.date.accessioned2024-10-10T06:30:36Z-
dc.date.available2024-10-10T06:30:36Z-
dc.date.created2024-10-08-
dc.date.issued2024-06-28-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/150767-
dc.identifier.urihttps://dbpia.co.kr/journal/articleDetail?nodeId=NODE11891186-
dc.description.abstractInspired by biological neural networks, deep spiking neural networks (SNNs) offer lower energy consumption and faster processing speeds compared to deep neural networks (DNNs). However, SNNs, still under development, suffer from lower learning performance. Since most deep SNN research utilizes data augmentation techniques applied in DNNs, we aim to examine whether these augmentations are also effective in deep SNNs. Furthermore, we explore how varying the hyperparameters used in Mixup and CutMix affects their efficacy in order to identify the optimal settings for these techniques.-
dc.languageKorean-
dc.publisher대한전자공학회-
dc.title데이터 증강 기법이 deep SNN의 학습에 미치는 영향 분석-
dc.typeConference-
dc.description.journalClass2-
dc.identifier.bibliographicCitation대한전자공학회 하계학술대회-
dc.citation.title대한전자공학회 하계학술대회-
dc.citation.conferencePlaceKO-
dc.citation.conferencePlace롯데호텔 제주-
dc.citation.conferenceDate2024-06-26-
dc.relation.isPartOf2024년도 대한전자공학회 하계학술대회 논문집-
Appears in Collections:
KIST Conference Paper > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE