Full metadata record

DC Field Value Language
dc.contributor.authorCho, Hagyeong-
dc.contributor.authorSeo, Haewon-
dc.contributor.authorMin, Jihong-
dc.contributor.authorWon, Ji-eun-
dc.contributor.authorHong, Jongsup-
dc.contributor.authorYoon, Kyung Joong-
dc.date.accessioned2024-10-26T07:00:09Z-
dc.date.available2024-10-26T07:00:09Z-
dc.date.created2024-10-25-
dc.date.issued2024-11-
dc.identifier.issn2050-7488-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/150864-
dc.description.abstractHigh-temperature solid oxide cells (SOCs) provide a highly efficient route for power generation and hydrogen production. In this study, we develop cobalt-embedded gadolinia-doped ceria nanocatalysts that significantly enhance the performance of nickel-based fuel electrodes of SOCs. These nanocatalysts are synthesized in situ within the pores of the electrode using a urea-based infiltration process. Doping gadolinia into the ceria lattice improves the oxygen ionic conductivity, and uniform gadolinia-doped ceria nanoparticles, 20-30 nm in size, consistently form within both symmetric and full cells. Meanwhile, a portion of the cobalt also forms discrete nanoparticles, less than 10 nm in size, further boosting catalytic activity. The electrochemical performance of the full cells is improved by approximately 30% and 60% in fuel cell and electrolysis mode operations, respectively. Additionally, the cell operates stably for 300 h under a constant electrolysis current of -1.0 A cm(-2) at 700 degrees C, demonstrating that the nanocatalysts remain stable under harsh high-temperature conditions.-
dc.languageEnglish-
dc.publisherRoyal Society of Chemistry-
dc.titleIn situ synthesis of cobalt-embedded gadolinia-doped ceria nanocatalysts for high-temperature solid oxide cells-
dc.typeArticle-
dc.identifier.doi10.1039/d4ta03979c-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJournal of Materials Chemistry A, v.12, no.41, pp.28002 - 28011-
dc.citation.titleJournal of Materials Chemistry A-
dc.citation.volume12-
dc.citation.number41-
dc.citation.startPage28002-
dc.citation.endPage28011-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.scopusid2-s2.0-85206441417-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusANODE-
dc.subject.keywordPlusPOLARIZATION-
dc.subject.keywordPlusRESISTANCE-
dc.subject.keywordPlusCATALYSTS-
dc.subject.keywordPlusELECTRODE PERFORMANCE-
dc.subject.keywordPlusFUEL-CELLS-
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE