Full metadata record

DC Field Value Language
dc.contributor.authorYun, Jung Min-
dc.contributor.authorPark, Min Ho-
dc.contributor.authorKim, Yu Bin-
dc.contributor.authorChoi, Min Jung-
dc.contributor.authorKim, Seunghwan-
dc.contributor.authorYi, Yeonjin-
dc.contributor.authorPark, Soohyung-
dc.contributor.authorKang, Seong Jun-
dc.date.accessioned2024-11-07T02:00:42Z-
dc.date.available2024-11-07T02:00:42Z-
dc.date.created2024-11-06-
dc.date.issued2024-10-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/150993-
dc.description.abstractOne of the major challenges in QLED research is improving the stability of the devices. In this study, we fabricated all inorganic quantum-dot light emitting diodes (QLEDs) using hafnium oxide (HfOx) as the hole transport layer (HTL), a material commonly used for insulator. Oxygen vacancies in HfOx create defect states below the Fermi level, providing a pathway for hole injection. The concentration of these oxygen vacancies can be controlled by the annealing temperature. We optimized the all-inorganic QLEDs with HfOx as the HTL by changing the annealing temperature. The optimized QLEDs with HfOx as the HTL showed a maximum luminance and current efficiency of 66,258 cd/m2 and 9.7 cd/A, respectively. The fabricated all-inorganic QLEDs exhibited remarkable stability, particularly when compared to devices using organic materials for the HTL. Under extended storage in ambient conditions, the all-inorganic device demonstrated a significantly enhanced operating lifetime (T50) of 5.5 h, which is 11 times longer than that of QLEDs using an organic HTL. These results indicate that the all-inorganic QLEDs structure, with ITO/MoO3/HfOx/QDs/ZnMgO/Al, exhibits superior stability compared to organic-inorganic hybrid QLEDs.-
dc.languageEnglish-
dc.publisherMDPI Open Access Publishing-
dc.titleImprovement of the Stability of Quantum-Dot Light Emitting Diodes Using Inorganic HfOx Hole Transport Layer-
dc.typeArticle-
dc.identifier.doi10.3390/ma17194739-
dc.description.journalClass1-
dc.identifier.bibliographicCitationMaterials, v.17, no.19-
dc.citation.titleMaterials-
dc.citation.volume17-
dc.citation.number19-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001334108100001-
dc.identifier.scopusid2-s2.0-85206486536-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusHIGHLY EFFICIENT-
dc.subject.keywordAuthorQLEDs-
dc.subject.keywordAuthorall-inorganic device-
dc.subject.keywordAuthorquantum dots-
dc.subject.keywordAuthorstable-
dc.subject.keywordAuthoroxygen vacancies-
dc.subject.keywordAuthoroptoelectronics-
dc.subject.keywordAuthorsolution process-
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE