Full metadata record

DC Field Value Language
dc.contributor.authorStonawski, Julian-
dc.contributor.authorSchroeder, Melanie-
dc.contributor.authorGordes, Janett-
dc.contributor.authorJunginger, Frieder-
dc.contributor.authorHager, Linus-
dc.contributor.authorLauf, Pascal-
dc.contributor.authorIkhsan, Muhammad Mara-
dc.contributor.authorHenkensmeier, Dirk-
dc.contributor.authorThiele, Simon-
dc.contributor.authorKerres, Jochen-
dc.date.accessioned2024-11-27T11:30:27Z-
dc.date.available2024-11-27T11:30:27Z-
dc.date.created2024-11-25-
dc.date.issued2024-12-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/151148-
dc.description.abstractIn this work, a class of polymers with pendant pyridine moieties and variable p-terphenyl (pTP) content was developed via superacid catalyzed polyhydroxyalkylation (PHA). High controllability of the copolymer composition was demonstrated, allowing for straightforward fine-tuning of the material properties. Low levels of p-terphenyl were used to obtain materials with improved conductivities of up to 83 mS cm?1 in 3 M H2SO4, allowing the efficient application at high current densities. Increasing the p-terphenyl content significantly improved the selectivities up to 1.88 × 1013 S s m?3, resulting in optimized materials for low current density applications. A single cell equipped with BP-pTP10-Py exhibited an energy efficiency (EE) of 76.7% at a current density of 200 mA cm?2 (vs 73.7% for the commercial reference FAPQ330). At lower current density (50 mA cm?2), the single cells equipped with BP-pTP20-Py and BP-pTP35-Py showed the highest EE of 92.3% (vs 90.9% for the FAPQ330). Ex situ stability tests in 1.6 M V(V)/2 M H2SO4 proved high chemical stability with no changes in the NMR spectra and similar V(IV) contents in the stability solution as the reference FAPQ330. In addition, long-term in situ tests revealed no evidence of performance degradation for the single cell equipped with BP-pTP20-Py.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.titlePyridine-Containing Polyhydroxyalkylation-Based Polymers for Use in Vanadium Redox Flow Batteries-
dc.typeArticle-
dc.identifier.doi10.1021/acsaem.4c01671-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Applied Energy Materials, v.7, no.23, pp.10834 - 10845-
dc.citation.titleACS Applied Energy Materials-
dc.citation.volume7-
dc.citation.number23-
dc.citation.startPage10834-
dc.citation.endPage10845-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordAuthorpyridine-containing-
dc.subject.keywordAuthorvanadiumredox flow battery-
dc.subject.keywordAuthorPolyhydroxyalkylation-
dc.subject.keywordAuthorion-selective membrane-
dc.subject.keywordAuthorimproved selectivity-
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE