Bioelastic state recovery for haptic sensory substitution

Authors
Flavin, Matthew T.Ha, Kyoung-HoGuo, ZengrongLi, ShupengKim, Jin-TaeSaxena, TaraSimatos, DimitriosAl-Najjar, FatimahMao, YuxuanBandapalli, ShishirFan, ChengyeBai, DongjunZhang, ZhuangZhang, YanlinFlavin, EunhyeMadsen, Kenneth E.Huang, YiEmu, LuoqianZhao, JingyangYoo, Jae-YoungPark, MinsuShin, JaehoHuang, Aaron G.Shin, Hee-SupColgate, J. EdwardHuang, YonggangXie, ZhaoqianJiang, HanqingRogers, John A.
Issue Date
2024-11
Publisher
Nature Publishing Group
Citation
Nature, v.635, no.8038, pp.345 - 352
Abstract
The rich set of mechanoreceptors found in human skin1,2 offers a versatile engineering interface for transmitting information and eliciting perceptions3,4, potentially serving a broad range of applications in patient care5 and other important industries6,7. Targeted multisensory engagement of these afferent units, however, faces persistent challenges, especially for wearable, programmable systems that need to operate adaptively across the body8,9,10,11. Here we present a miniaturized electromechanical structure that, when combined with skin as an elastic, energy-storing element, supports bistable, self-sensing modes of deformation. Targeting specific classes of mechanoreceptors as the basis for distinct, programmed sensory responses, this haptic unit can deliver both dynamic and static stimuli, directed as either normal or shear forces. Systematic experimental and theoretical studies establish foundational principles and practical criteria for low-energy operation across natural anatomical variations in the mechanical properties of human skin. A wireless, skin-conformable haptic interface, integrating an array of these bistable transducers, serves as a high-density channel capable of rendering input from smartphone-based 3D scanning and inertial sensors. Demonstrations of this system include sensory substitution designed to improve the quality of life for patients with visual and proprioceptive impairments.
ISSN
0028-0836
URI
https://pubs.kist.re.kr/handle/201004/151150
DOI
10.1038/s41586-024-08155-9
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE