Full metadata record

DC Field Value Language
dc.contributor.authorJin, Youngho-
dc.contributor.authorSeong, Honggyu-
dc.contributor.authorMoon, Joon Ha-
dc.contributor.authorKim, Geongil-
dc.contributor.authorYoo, Hyerin-
dc.contributor.authorJung, Taejung-
dc.contributor.authorKim, Sung Kuk-
dc.contributor.authorCho, Se Youn-
dc.contributor.authorChoi, Jaewon-
dc.date.accessioned2024-11-30T06:00:50Z-
dc.date.available2024-11-30T06:00:50Z-
dc.date.created2024-11-30-
dc.date.issued2024-10-
dc.identifier.issn0169-4332-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/151215-
dc.description.abstractZinc selenide (ZnSe), a metal chalcogenide, is an attractive anode material for sodium-ion batteries, exhibiting high theoretical capacity (371.4 mAhg-1) and numerous redox sites. However, volume expansion and low stability during the charge/discharge processes present challenges. This study aimed to solve these inherent problems and synthesize a high-performance anode material by growing nano sized ZnSe on surface of reduced graphene oxide (rGO). ZnSe has two crystal structures, namely zinc-blende and wurtzite, and undergoes a transformation from wurtzite to the zinc-blende phase during sodium ion storage. This study conducted X-ray diffraction analysis of the electrode after the galvanostatic charge/discharge test and performed cyclic voltammetry analysis to investigate the transformation process. In addition, real-time monitoring of Nyquist plot and phase transition was performed to investigate the mechanisms of sodium ion storage. The ZnSe-rGO, exhibiting conversion reactions, shows cycle performance of 316.14 mAhg- 1 at a current density of 0.5 Ag- 1 after 1000 cycles. The evaluation of anode materials and analysis of their storage mechanism can facilitate sodium-ion batteries research.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleSynthesized nanosphere ZnSe and reduced graphene oxide as anode materials for sodium-ion batteries: Analysis on phase transition and storage mechanism-
dc.typeArticle-
dc.identifier.doi10.1016/j.apsusc.2024.160606-
dc.description.journalClass1-
dc.identifier.bibliographicCitationApplied Surface Science, v.670-
dc.citation.titleApplied Surface Science-
dc.citation.volume670-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001358249900001-
dc.identifier.scopusid2-s2.0-85198005683-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Coatings & Films-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusENERGY-STORAGE-
dc.subject.keywordPlusELECTROCHEMICAL PROPERTIES-
dc.subject.keywordPlusLITHIUM-
dc.subject.keywordPlusCARBON-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusELECTRODE-
dc.subject.keywordAuthorZinc selenide-
dc.subject.keywordAuthorReduced graphene oxide-
dc.subject.keywordAuthorAnode-
dc.subject.keywordAuthorElectrochemical reaction kinetics-
dc.subject.keywordAuthorSodiation mechanism-
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE