Dual Strategies of Na+ Electrolyte Additives and Dendrites Protective Ti3C2TX-MXene/Zn Anode with 2D MXene Nanosheet Encased Niobium Pyrophosphate (NbP2O7) Composite Binder-Free Cathode for Stable Zinc-Ion Storage

Authors
Patil, Amar M.You, Hyo-MinJadhav, Arti A.Hong, JongwooDas, Sushanta K.Dhas, Suprimkumar D.Lim, Tae JinLee, EunbyoulChung, Kyung YoonKim, KyeounghakJun, Seong Chan
Issue Date
2024-10
Publisher
Wiley-VCH Verlag
Citation
Advanced Energy Materials
Abstract
Zinc-ion capacitors (ZICs) are promising next-generation energy storage systems (ESS) owing to high safety, material abundance, environmental friendliness, and low cost; however, the energy density of ZICs must be improved to compete with lithium-ion batteries (LIBs). Here, the study implements three strategies to enhance the electrochemical performance and manage dendritic growth on Zn anodes, including crafting a highly efficient redox electroactive niobium pyrophosphate (NbP2O7)/Ti3C2TX-MXene binder-free cathode, incorporating a NaClO4 additive electrolyte, and applying a protective Ti3C2TX-MXene layer on Zn anode. The cathode facilitates rapid Zn2+ ion diffusion and a stable host structure. An electrostatic protection layer formed in additive electrolyte and MXene layers regulates the uniform distribution of the electric fields and supports the equalization of nucleation sites. These results are supported by density functional theory (DFT) calculations. The ZICs display an excellent specific capacitance (113.3 F g(-1) at 1.5 A g(-1)) in aqueous additive electrolytes. The flexible solid-state ZICs exhibits a volumetric capacitance of 865.05 mF cm(-3), and an energy density of 0.347 mWh cm(-3) at 2.29 mW cm(-3) along with capacitance retention of >100% over 38 000 charge-discharge cycles.
Keywords
ENERGY-STORAGE; HYBRID; BATTERY; INTERCALATION; CARBIDES; density functional theory simulations; NaClO4 electrolyte additives; Ti3C2TX-MXene wrapped NbP2O7; Ti3C2TX-MXene/Zn; Zn-ion capacitor
ISSN
1614-6832
URI
https://pubs.kist.re.kr/handle/201004/151216
DOI
10.1002/aenm.202403322
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE