Full metadata record

DC Field Value Language
dc.contributor.authorLee, Changhyeon-
dc.contributor.authorKim, Subin-
dc.contributor.authorCho, Ki-Yeop-
dc.contributor.authorSim, Kiyeon-
dc.contributor.authorJo, Jinhyeon-
dc.contributor.authorEom, Kwangsup-
dc.date.accessioned2025-01-07T05:30:27Z-
dc.date.available2025-01-07T05:30:27Z-
dc.date.created2024-12-30-
dc.date.issued2024-12-
dc.identifier.issn1385-8947-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/151487-
dc.description.abstractDespite the lowest electrode potential (-3.04 V vs. S.H.E) and high capacity (3,860 mAh/g) of lithium metal anodes (LMAs), LMAs face numerous challenges for practical industrialization. In particular, the inevitable lithium (Li) dendrites and volume expansion during the charge/discharge processes cannot be prevented by a naturally formed conventional solid electrolyte interface (SEI), which is not only fragile but also induces the growth of Li dendrites. Herein, we introduce a facile method to artificially construct a robust SEI. Specifically, we form [Cu(SCN2H4)n]Cl nanowires (CTC NWs) precursor on a Cu current collector using electrochemical deposition (ECD) under thiourea (SCN2H4, TU) solution. Then by applying an initial electrochemical reaction of Li deposition/stripping, the CTC NWs are converted into uniform and compact multi-inorganic SEI layers composed of Li2S2/Li2Sx, LiCl, and LixN. Moreover, the residual TU in the CTC NWs promotes favorable LiNO3 decomposition, transforming into Li3N through strong hydrogen bonding (N-H) between both molecules. Such multi-inorganic SEI layers promote homogeneous Li+ flux and significantly decrease the resistance of the SEI, enabling smooth Li plating on the surface. As a result, the LMA employing CTC NWs (Li@CTC NWs) shows exceptional cyclic stability having a low overpotential of 14 mV for more than 1,000 hat a symmetric LMA test at 1 mA cm(-2). Moreover, the Li@CTC NWs parallel to LFP full-cell LMB demonstrates practical improvement by showing about 30 % higher capacity retention (85.6 %) compared to the untreated LMB cell during the initial 140 cycles at 1.0 C-rate.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleConstruction of robust solid electrolyte interface using [Cu(SCN2H4)n]Cl nanowires for stable lithium metal anodes-
dc.typeArticle-
dc.identifier.doi10.1016/j.cej.2024.158005-
dc.description.journalClass1-
dc.identifier.bibliographicCitationChemical Engineering Journal, v.502-
dc.citation.titleChemical Engineering Journal-
dc.citation.volume502-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001370061500001-
dc.identifier.scopusid2-s2.0-85210122096-
dc.relation.journalWebOfScienceCategoryEngineering, Environmental-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusELECTRODEPOSITION-
dc.subject.keywordPlusBATTERY-
dc.subject.keywordPlusDESIGN-
dc.subject.keywordPlusLAYER-
dc.subject.keywordAuthorLithium metal battery-
dc.subject.keywordAuthorLi metal anode-
dc.subject.keywordAuthorCurrent collector modification-
dc.subject.keywordAuthorArtificial solid electrolyte interphase (SEI)-
dc.subject.keywordAuthorMulti-inorganic SEI formation-
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE