Full metadata record

DC Field Value Language
dc.contributor.authorJi, Sang Gu-
dc.contributor.authorKim, Minho M.-
dc.contributor.authorHan, Man Ho-
dc.contributor.authorCho, Junsic-
dc.contributor.authorSon, Yoosang-
dc.contributor.authorKim, Young Yong-
dc.contributor.authorJeong, Jaeyoung-
dc.contributor.authorKim, Zee Hwan-
dc.contributor.authorChae, Keun Hwa-
dc.contributor.authorOh, Hyung-Suk-
dc.contributor.authorKim, Hyungjun-
dc.contributor.authorChoi, Chang Hyuck-
dc.date.accessioned2025-01-20T01:30:20Z-
dc.date.available2025-01-20T01:30:20Z-
dc.date.created2025-01-17-
dc.date.issued2024-12-
dc.identifier.issn2520-1158-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/151590-
dc.description.abstractAlkali metal cations (AM+) exhibit high solubility and ionic conductivity, making them optimal components in aqueous electrolytes. Despite the conventional belief that AM+ are chemically inert spectators, the strong dependence of electrocatalysis on AM+ has recently provoked debates about their unforeseen catalytic role. However, conclusive evidence is still lacking. Here we demonstrate that AM+ can couple with reaction intermediates and determine kinetics as homogeneous cocatalysts in aqueous conditions, for the alkaline oxygen reduction reaction on a carbon catalyst. In situ X-ray absorption spectroscopy reveals a change in the electronic structure of Na+ from its hydrated state on a charged electrode. In situ Raman spectroscopy further identifies that this change is due to the formation of water-unstable NaO2 as a key intermediate in OOH- production. Together with theoretical calculations, this finding enunciates the counterintuitive cocatalytic role of AM+ in aqueous environments, highlighting the exigency of refined interface design principles for better electrocatalysis.-
dc.languageEnglish-
dc.publisherNATURE PUBLISHING GROUP-
dc.titleAlkali metal cations act as homogeneous cocatalysts for the oxygen reduction reaction in aqueous electrolytes-
dc.typeArticle-
dc.identifier.doi10.1038/s41929-024-01241-1-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNature Catalysis, v.7, no.12, pp.1330 - 1338-
dc.citation.titleNature Catalysis-
dc.citation.volume7-
dc.citation.number12-
dc.citation.startPage1330-
dc.citation.endPage1338-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001381576500012-
dc.identifier.scopusid2-s2.0-85212776402-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalResearchAreaChemistry-
dc.type.docTypeArticle-
dc.subject.keywordPlusFREE-ENERGY-
dc.subject.keywordPlusCARBON-
dc.subject.keywordPlusWATER-
dc.subject.keywordPlusOXIDATION-
dc.subject.keywordPlusCO2-
dc.subject.keywordPlusELECTROCATALYSIS-
dc.subject.keywordPlusMECHANISM-
dc.subject.keywordPlusH2O-
dc.subject.keywordPlusELECTROCHEMICAL REDUCTION-
dc.subject.keywordPlusHYDROGEN EVOLUTION-
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE