Full metadata record

DC Field Value Language
dc.contributor.authorLee, Sungju-
dc.contributor.authorYu, Hayoung-
dc.contributor.authorHan, Min Gook-
dc.contributor.authorJung, Hyewon-
dc.contributor.authorJung, Hee-Tae-
dc.contributor.authorKim, Seung Min-
dc.contributor.authorJeong, Hyeon Su-
dc.date.accessioned2025-03-20T14:30:13Z-
dc.date.available2025-03-20T14:30:13Z-
dc.date.created2025-03-19-
dc.date.issued2024-12-
dc.identifier.issn2366-9608-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/151922-
dc.description.abstractIn this study, the challenge of non-electrochemical activity in carbon nanotube fibers (CNTFs) is addressed by developing a modified chlorosulfonic acid (CSA) densification process specifically developed for directly spun CNTFs. This post-treatment method, well-known for enhancing the physical properties of CNTFs, utilizes the double diffusion phenomenon to efficiently integrate a diverse range of active materials, from conductive polymers like polyaniline (PANI) to metal oxides like nickel oxide (NiO), into the fibers. This universal and cost-effective approach not only simplifies the integration process but also significantly boosts both the electrochemical and physical properties of the fibers. For instance, the PANI@CNTF composite exhibited a remarkable 17-fold increase in specific capacitance and a two-fold increase in load value compared to its pristine counterparts. This method proves straightforward, efficient, and versatile, making it suitable for developing fiber-shaped electrodes that advance the capabilities of wearable energy storage systems.-
dc.languageEnglish-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.titleVersatile and Fast Electrochemical Activation Method for Carbon Nanotube Fibers with Diverse Active Materials-
dc.typeArticle-
dc.identifier.doi10.1002/smtd.202401478-
dc.description.journalClass1-
dc.identifier.bibliographicCitationSmall Methods-
dc.citation.titleSmall Methods-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.scopusid2-s2.0-85212281235-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusCOMPOSITE-
dc.subject.keywordPlusSTRENGTH-
dc.subject.keywordPlusANODES-
dc.subject.keywordPlusCNT-
dc.subject.keywordAuthorindustrial carbon nanotube fiber-
dc.subject.keywordAuthorsupercapacitor-
dc.subject.keywordAuthorcomposite-
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE