Full metadata record

DC Field Value Language
dc.contributor.authorKim, Nayeon-
dc.contributor.authorWon, Jongin-
dc.contributor.authorMun, Yeongjun-
dc.contributor.authorKang, Yeong A.-
dc.contributor.authorKim, Hyun-Sik-
dc.contributor.authorKim, Jungwon-
dc.contributor.authorJang, Kwang-Suk-
dc.date.accessioned2025-10-30T07:00:26Z-
dc.date.available2025-10-30T07:00:26Z-
dc.date.created2025-10-30-
dc.date.issued2025-10-
dc.identifier.issn1944-8244-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/153370-
dc.description.abstractIn wearable thermoelectric generators (TEGs), the challenge is to develop thermoelectric materials that are both high-performance and mechanically flexible. Here, we present a flexible n-type Ag2Se/poly(vinylidene fluoride) (PVDF) composite film that simultaneously achieves enhanced thermoelectric figure of merit (zT) and improved flexibility. A freestanding Ag2Se film incorporating 5 wt % PVDF reached a zT of 0.591 at room temperature (versus 0.529 for pure Ag2Se) and a minimum bending radius of 3.5 mm (improved from 6 mm), and it maintained its performance over 1000 bending cycles. The performance enhancement is attributed to a uniform dispersion of PVDF within the Ag2Se matrix, which greatly reduces lattice thermal conductivity via interfacial phonon scattering. We integrated the n-type Ag2Se/PVDF and p-type single-walled carbon nanotube/PVDF films into a vertical wearable TEG architecture that leverages out-of-plane (through-thickness) thermal gradients. The resulting device generated power from a small skin-to-ambient temperature difference (similar to 10 degrees C) and exhibited significantly increased output under mild airflow or motion. This work demonstrates a viable strategy for harvesting body heat using flexible high-zT materials in a device design optimized for low-grade thermal energy.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.titleWearable Thermoelectric Generators Based on Flexible Ag2Se/PVDF Films: Influence of Film Geometry and Wind on Energy Harvesting-
dc.typeArticle-
dc.identifier.doi10.1021/acsami.5c15434-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Applied Materials & Interfaces, v.17, no.40, pp.56359 - 56369-
dc.citation.titleACS Applied Materials & Interfaces-
dc.citation.volume17-
dc.citation.number40-
dc.citation.startPage56359-
dc.citation.endPage56369-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001578841600001-
dc.identifier.scopusid2-s2.0-105018010359-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusTEMPERATURE-
dc.subject.keywordPlusSCATTERING-
dc.subject.keywordPlusCOMPOSITE-
dc.subject.keywordPlusLEADS-
dc.subject.keywordAuthorbody-heat energy harvesting-
dc.subject.keywordAuthorinorganic/polymer composites-
dc.subject.keywordAuthorAg2Se-basedfilms-
dc.subject.keywordAuthorstacked film configuration-
dc.subject.keywordAuthorbendable thermoelectric films-
Appears in Collections:
KIST Article > 2025
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE