Full metadata record

DC Field Value Language
dc.contributor.authorLee, Seokyeong-
dc.contributor.authorChoi, Junyong-
dc.contributor.authorKim, Seungryong-
dc.contributor.authorKim, Ig-Jae-
dc.contributor.authorCho, Junghyun-
dc.date.accessioned2025-10-30T07:00:43Z-
dc.date.available2025-10-30T07:00:43Z-
dc.date.created2025-10-30-
dc.date.issued2025-09-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/153372-
dc.description.abstractNeural Radiance Fields (NeRF) have demonstrated strong performance in novel view synthesis under idealized conditions such as dense multi-view observations, consistent illumination, and known camera poses. However, these assumptions often do not hold in real-world scenarios, where inputs are sparse and lighting varies significantly. This paper presents a novel regularization framework for few-shot NeRF reconstruction under unconstrained illumination. By leveraging intrinsic, illumination-invariant representations (e.g., albedo), our method enforces cross-view appearance consistency, leading to more stable synthesis. To further improve applicability, we propose a lightweight variant that achieves comparable improvements with significantly reduced computational cost. We also establish new benchmarks that reflect diverse illumination and viewpoint conditions. Extensive experiments show that our method improves robustness and rendering quality across challenging real-world scenes, without relying on dense inputs or manual supervision.-
dc.languageEnglish-
dc.publisherInstitute of Electrical and Electronics Engineers Inc.-
dc.titleLeveraging Intrinsic Components for Few-Shot Neural Radiance Fields in Unconstrained Illumination-
dc.typeArticle-
dc.identifier.doi10.1109/ACCESS.2025.3610908-
dc.description.journalClass1-
dc.identifier.bibliographicCitationIEEE Access, v.13, pp.169150 - 169165-
dc.citation.titleIEEE Access-
dc.citation.volume13-
dc.citation.startPage169150-
dc.citation.endPage169165-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001587270100020-
dc.identifier.scopusid2-s2.0-105016521227-
dc.relation.journalWebOfScienceCategoryComputer Science, Information Systems-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryTelecommunications-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaTelecommunications-
dc.type.docTypeArticle-
dc.subject.keywordPlusVIEW SYNTHESIS-
dc.subject.keywordPlusRECONSTRUCTION-
dc.subject.keywordAuthorColor-
dc.subject.keywordAuthorRendering (computer graphics)-
dc.subject.keywordAuthorImage color analysis-
dc.subject.keywordAuthorGeometry-
dc.subject.keywordAuthorBenchmark testing-
dc.subject.keywordAuthorRobustness-
dc.subject.keywordAuthorOptimization-
dc.subject.keywordAuthorCameras-
dc.subject.keywordAuthorIllumination decomposition-
dc.subject.keywordAuthorneural radiance fields-
dc.subject.keywordAuthorview synthesis-
dc.subject.keywordAuthorNeural radiance field-
dc.subject.keywordAuthorLighting-
Appears in Collections:
KIST Article > 2025
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE