Full metadata record

DC Field Value Language
dc.contributor.authorFreddy Baltazar Iniguez-
dc.contributor.authorDaekyu Choi-
dc.contributor.authorPeijin Jiang-
dc.contributor.authorDogun Park-
dc.contributor.authorKiyong Kim-
dc.contributor.authorLee, Min Wook-
dc.contributor.authorHongseok Jo-
dc.contributor.authorSeongpil An-
dc.date.accessioned2025-11-06T09:31:58Z-
dc.date.available2025-11-06T09:31:58Z-
dc.date.created2025-11-04-
dc.date.issued2025-11-
dc.identifier.issn2524-7921-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/153416-
dc.description.abstractThe triboelectric nanogenerator (TENG) has emerged as a promising renewable energy technology for harvesting kinetic energy from natural sources, such as human motion and rainfall. In this study, we fabricate a mechanically robust, porous, and superhydrophobic PTFE-SiO2 nanofiber (NF)-based TENG using a facile electrohydrodynamic spinning technique, i.e., electrospinning method. The incorporation of SiO2 nanoparticles (NPs) into the PTFE NF matrix significantly enhances the output performance, energy-harvesting efficiency, and superhydrophobic characteristics of the PTFE-SiO2 NF-based TENG. The optimized PTFE-SiO2 NF-based TENG achieves a maximum energy-harvesting efficiency of 102 mW·N?1·m?2, outperforming previously reported NF-based TENGs. Moreover, it successfully harvests kinetic energy from multiple natural stimuli, generating 429 μW from human interaction and 1.65 μW from water droplets. These results demonstrate the potential of PTFE-SiO2 NF-based TENG for integration into self-powered wearable electronics and environmental energy-harvesting systems for their autonomous operation without reliance on external power sources.-
dc.languageEnglish-
dc.publisherSpringer Nature-
dc.titleNanotextured Tribonegative PTFE-SiO2 Submicron Fibers for Self-Cleanable and Highly Flexible Kinetic Energy Harvester-
dc.typeArticle-
dc.identifier.doi10.1007/s42765-025-00633-7-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAdvanced Fiber Materials-
dc.citation.titleAdvanced Fiber Materials-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMaterials Science, Textiles-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusTRIBOELECTRIC NANOGENERATORS-
dc.subject.keywordPlusNANOFIBER MEMBRANES-
dc.subject.keywordPlusSUPERHYDROPHOBIC MODIFICATION-
dc.subject.keywordPlusCONTACT-ELECTRIFICATION-
dc.subject.keywordPlusSURFACE-ROUGHNESS-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusSEPARATION-
dc.subject.keywordPlusWATER-
dc.subject.keywordPlusDROPLETS-
dc.subject.keywordPlusIMPACT-
dc.subject.keywordAuthorTriboelectric nanogenerator-
dc.subject.keywordAuthorKinetic energy-harvesting-
dc.subject.keywordAuthorSuperhydrophobicity-
dc.subject.keywordAuthorElectrospinning-
dc.subject.keywordAuthorPTFE-SiO2 nanofiber mat-
Appears in Collections:
KIST Article > 2025
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE