Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Kim, Subin | - |
| dc.contributor.author | Shin, Chaeyeon | - |
| dc.contributor.author | Cho, Jinhan | - |
| dc.contributor.author | Lee, Jieun | - |
| dc.date.accessioned | 2025-11-11T03:34:45Z | - |
| dc.date.available | 2025-11-11T03:34:45Z | - |
| dc.date.created | 2025-11-11 | - |
| dc.date.issued | 2025-10 | - |
| dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/153434 | - |
| dc.description.abstract | All-solid-state batteries (ASSBs) have garnered significant attention as next-generation energy storage systems, offering high theoretical energy density and enhanced safety, and are thus considered as potential replacements for conventional liquid-based lithium-ion batteries (LIBs). Among various solid electrolytes (SEs), sulfide-based SEs are regarded as leading candidates due to their outstanding room-temperature ionic conductivity and excellent processability. Despite their advantages, the fabrication of ultrathin SE membranes remains a critical bottleneck for achieving both high energy density and cost-effective production in practical ASSB systems. In this perspective, we present an overview of the key challenges associated with ultrathin sulfide-based SE membranes, along with design criteria and recent strategies to address these issues. Particular emphasis is placed on state-of-the-art fabrication techniques, including solution casting, dry film processing, scaffold support, and pressurization-based densification, which enable the formation of ultrathin SE layers. Finally, we provide a perspective on future research directions toward the reliable integration of ultrathin sulfide SE membranes into large-format ASSBs. | - |
| dc.language | English | - |
| dc.publisher | AMER CHEMICAL SOC | - |
| dc.title | Processing Challenges and Strategies for a Robust Ultrathin Solid Electrolyte Membrane in Sulfide-Based All-Solid-State Batteries | - |
| dc.type | Article | - |
| dc.identifier.doi | 10.1021/acsaem.5c02250 | - |
| dc.description.journalClass | 1 | - |
| dc.identifier.bibliographicCitation | ACS Applied Energy Materials, v.8, no.19, pp.14014 - 14029 | - |
| dc.citation.title | ACS Applied Energy Materials | - |
| dc.citation.volume | 8 | - |
| dc.citation.number | 19 | - |
| dc.citation.startPage | 14014 | - |
| dc.citation.endPage | 14029 | - |
| dc.description.isOpenAccess | N | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.identifier.wosid | 001585267700001 | - |
| dc.identifier.scopusid | 2-s2.0-105018735781 | - |
| dc.relation.journalWebOfScienceCategory | Chemistry, Physical | - |
| dc.relation.journalWebOfScienceCategory | Energy & Fuels | - |
| dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
| dc.relation.journalResearchArea | Chemistry | - |
| dc.relation.journalResearchArea | Energy & Fuels | - |
| dc.relation.journalResearchArea | Materials Science | - |
| dc.type.docType | Review | - |
| dc.subject.keywordPlus | LITHIUM IONIC CONDUCTOR | - |
| dc.subject.keywordPlus | HIGH-ENERGY-DENSITY | - |
| dc.subject.keywordPlus | SUPERIONIC CONDUCTOR | - |
| dc.subject.keywordPlus | LI ARGYRODITES | - |
| dc.subject.keywordPlus | THIO-LISICON | - |
| dc.subject.keywordPlus | STABILITY | - |
| dc.subject.keywordPlus | SOLVENT | - |
| dc.subject.keywordPlus | GLASSES | - |
| dc.subject.keywordPlus | LI6PS5X | - |
| dc.subject.keywordPlus | BINDER | - |
| dc.subject.keywordAuthor | all-solid-state batteries | - |
| dc.subject.keywordAuthor | sulfide solid electrolytes | - |
| dc.subject.keywordAuthor | binder | - |
| dc.subject.keywordAuthor | membrane fabrication | - |
| dc.subject.keywordAuthor | scalable approach | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.