Full metadata record

DC Field Value Language
dc.contributor.authorKim, Subin-
dc.contributor.authorShin, Chaeyeon-
dc.contributor.authorCho, Jinhan-
dc.contributor.authorLee, Jieun-
dc.date.accessioned2025-11-11T03:34:45Z-
dc.date.available2025-11-11T03:34:45Z-
dc.date.created2025-11-11-
dc.date.issued2025-10-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/153434-
dc.description.abstractAll-solid-state batteries (ASSBs) have garnered significant attention as next-generation energy storage systems, offering high theoretical energy density and enhanced safety, and are thus considered as potential replacements for conventional liquid-based lithium-ion batteries (LIBs). Among various solid electrolytes (SEs), sulfide-based SEs are regarded as leading candidates due to their outstanding room-temperature ionic conductivity and excellent processability. Despite their advantages, the fabrication of ultrathin SE membranes remains a critical bottleneck for achieving both high energy density and cost-effective production in practical ASSB systems. In this perspective, we present an overview of the key challenges associated with ultrathin sulfide-based SE membranes, along with design criteria and recent strategies to address these issues. Particular emphasis is placed on state-of-the-art fabrication techniques, including solution casting, dry film processing, scaffold support, and pressurization-based densification, which enable the formation of ultrathin SE layers. Finally, we provide a perspective on future research directions toward the reliable integration of ultrathin sulfide SE membranes into large-format ASSBs.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.titleProcessing Challenges and Strategies for a Robust Ultrathin Solid Electrolyte Membrane in Sulfide-Based All-Solid-State Batteries-
dc.typeArticle-
dc.identifier.doi10.1021/acsaem.5c02250-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Applied Energy Materials, v.8, no.19, pp.14014 - 14029-
dc.citation.titleACS Applied Energy Materials-
dc.citation.volume8-
dc.citation.number19-
dc.citation.startPage14014-
dc.citation.endPage14029-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001585267700001-
dc.identifier.scopusid2-s2.0-105018735781-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeReview-
dc.subject.keywordPlusLITHIUM IONIC CONDUCTOR-
dc.subject.keywordPlusHIGH-ENERGY-DENSITY-
dc.subject.keywordPlusSUPERIONIC CONDUCTOR-
dc.subject.keywordPlusLI ARGYRODITES-
dc.subject.keywordPlusTHIO-LISICON-
dc.subject.keywordPlusSTABILITY-
dc.subject.keywordPlusSOLVENT-
dc.subject.keywordPlusGLASSES-
dc.subject.keywordPlusLI6PS5X-
dc.subject.keywordPlusBINDER-
dc.subject.keywordAuthorall-solid-state batteries-
dc.subject.keywordAuthorsulfide solid electrolytes-
dc.subject.keywordAuthorbinder-
dc.subject.keywordAuthormembrane fabrication-
dc.subject.keywordAuthorscalable approach-
Appears in Collections:
KIST Article > 2025
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE