Full metadata record

DC Field Value Language
dc.contributor.authorHan, Ki Hyuk-
dc.contributor.authorYun, Deok Hyun-
dc.contributor.authorJang, Seung-Hun-
dc.contributor.authorAhn, Jeong Ung-
dc.contributor.authorNah, Young-Jun-
dc.contributor.authorKim, YongJin-
dc.contributor.authorKang, Min-Gu-
dc.contributor.authorHong, Seokmin-
dc.contributor.authorKoo, Hyun Cheol-
dc.contributor.authorLee, OukJae-
dc.date.accessioned2025-11-11T08:33:49Z-
dc.date.available2025-11-11T08:33:49Z-
dc.date.created2025-11-11-
dc.date.issued2025-10-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/153438-
dc.description.abstractSpin-orbit torque (SOT) enables efficient control of magnetization via spin-orbit coupling effects, so that accurate quantification of its efficiency is crucial for the development of spin-orbit devices. Among various characterization techniques, spin-torque ferromagnetic resonance (ST-FMR) provides a powerful method to quantify SOT. However, conventional analysis methods-such as voltage ratio analysis and DC modulation-often suffer from the limited accuracy due to uncertainties in RF current estimation. In this study, we propose a voltage-based circuit analysis that directly utilizes the measured ST-FMR signals, including parasitic effects, such as RF power loss, modulation factors, and parasitic shunting. Self-consistent checks and measurements on various heterostructures confirm that our approach yields SOT efficiencies consistent with those obtained from conventional methods. Furthermore, substrate-dependent variations are resolved by applying parasitic correction, validating the robustness of our analysis. This work provides an accurate and practical methodology for evaluating SOT efficiency of spin-orbit materials.-
dc.languageEnglish-
dc.publisherAmerican Institute of Physics Publising LLC-
dc.titleVoltage-circuit analysis in spin-torque ferromagnetic resonance-
dc.typeArticle-
dc.identifier.doi10.1063/5.0293634-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAPL Materials, v.13, no.10-
dc.citation.titleAPL Materials-
dc.citation.volume13-
dc.citation.number10-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001599986100001-
dc.identifier.scopusid2-s2.0-105020020342-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusMAGNETIC-PROPERTIES-
dc.subject.keywordPlusPERMEABILITY-
dc.subject.keywordPlusIMPACT-
Appears in Collections:
KIST Article > 2025
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE