Full metadata record

DC Field Value Language
dc.contributor.authorChae, Min Seong-
dc.contributor.authorRehman, Abdul-
dc.contributor.authorKim, Yeni-
dc.contributor.authorKim, Jaedeok-
dc.contributor.authorHan, Yaeeun-
dc.contributor.authorPark, Sangin-
dc.contributor.authorMun, Sungchul-
dc.date.accessioned2025-11-17T02:02:26Z-
dc.date.available2025-11-17T02:02:26Z-
dc.date.created2025-11-11-
dc.date.issued2025-09-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/153496-
dc.description.abstractThe growing demand for secure, immersive authentication in extended reality (XR) environments calls for neural interfaces that are both robust and user-friendly. This study introduces a novel and robust dual-modality EEG-based authentication framework that independently exploits: 1) steady-state visually evoked potentials (SSVEP) and 2) eye-blink-induced EEG responses as covert neural signatures. Both signals are recorded using a 64-channel EEG system seamlessly integrated with the Microsoft HoloLens 2 for immersive XR-based user evaluation. To mitigate visual fatigue while preserving signal fidelity, we replace conventional flicker stimuli with a 10 Hz grow-shrink visual design. We employ a modality-specific classification strategy, modeling SSVEP and eye-blink signals independently to retain their distinct neurophysiological characteristics. A multi-stage feature selection pipeline combines SHAP and Random Forest rankings, followed by logistic regression-based permutation importance to identify the top 10 discriminative features per modality. These features undergo statistical validation via non-parametric tests to ensure physiological plausibility and class separability. Classification is subsequently performed using four machine learning models-Random Forest, XGBoost, Support Vector Machine, and Logistic Regression-with Random Forest and XGBoost consistently yielding the highest performance. Evaluated across 20 participants using user-wise validation, our framework achieves over 99% accuracy and near-perfect ROC-AUC scores for both modalities, confirming strong discriminability between genuine and impostor attempts. Our results demonstrate that interpretable, fatigue-aware EEG features can deliver high authentication performance under XR conditions. The proposed system is lightweight and explicitly engineered for real-time deployment and spoof-resistance, making it well-suited for future XR-based defense, training, and industrial applications.-
dc.languageEnglish-
dc.publisherInstitute of Electrical and Electronics Engineers Inc.-
dc.titleEye-Blink and SSVEP-Based Selective Attention Interface for XR User Authentication: An Explainable Neural Decoding and Machine Learning Approach to Reducing Visual Fatigue-
dc.typeArticle-
dc.identifier.doi10.1109/ACCESS.2025.3613355-
dc.description.journalClass1-
dc.identifier.bibliographicCitationIEEE Access, v.13, pp.176998 - 177018-
dc.citation.titleIEEE Access-
dc.citation.volume13-
dc.citation.startPage176998-
dc.citation.endPage177018-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001596864800002-
dc.identifier.scopusid2-s2.0-105017390098-
dc.relation.journalWebOfScienceCategoryComputer Science, Information Systems-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryTelecommunications-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaTelecommunications-
dc.type.docTypeArticle-
dc.subject.keywordPlusEEG BIOMETRICS-
dc.subject.keywordAuthorElectroencephalography-
dc.subject.keywordAuthorAuthentication-
dc.subject.keywordAuthorVisualization-
dc.subject.keywordAuthorProtocols-
dc.subject.keywordAuthorBrain modeling-
dc.subject.keywordAuthorBiometrics-
dc.subject.keywordAuthorResists-
dc.subject.keywordAuthorFatigue-
dc.subject.keywordAuthorBiomedical monitoring-
dc.subject.keywordAuthorFeature extraction-
dc.subject.keywordAuthorBiometric security-
dc.subject.keywordAuthorEEG-
dc.subject.keywordAuthoreye blink-
dc.subject.keywordAuthorExplainable AI-
dc.subject.keywordAuthorneural decoding-
dc.subject.keywordAuthorSHAP-
dc.subject.keywordAuthorSSVEP-
dc.subject.keywordAuthorvisual fatigue-
dc.subject.keywordAuthorXR authentication.-
Appears in Collections:
KIST Article > 2025
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE