Full metadata record

DC Field Value Language
dc.contributor.authorChoi, Youngjin-
dc.contributor.authorPark, Su Jeong-
dc.contributor.authorCho, Bo Kyung-
dc.contributor.authorLee, Jongmin-
dc.contributor.authorSung, Yejin-
dc.contributor.authorZeng, Yang C.-
dc.contributor.authorChoi, Nakwon-
dc.contributor.authorShih, William M.-
dc.contributor.authorKim, Soo Hyun-
dc.contributor.authorKim, Dong-Hwee-
dc.contributor.authorCho, Seung-Woo-
dc.contributor.authorJung, Youngmee-
dc.contributor.authorRyu, Ju Hee-
dc.date.accessioned2025-11-17T02:37:34Z-
dc.date.available2025-11-17T02:37:34Z-
dc.date.created2025-11-11-
dc.date.issued2025-10-
dc.identifier.issn1530-6984-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/153500-
dc.description.abstractSevere peripheral nerve injuries cause significant functional impairments due to limited regenerative capacity. Growth factors such as brain-derived neurotrophic factor (BDNF) and nerve growth factor promote neuronal differentiation and regeneration, but their controlled and efficient delivery remains challenging. Here, we present square block DNA nanostructures (SQBs) as a modular platform for the spatially controlled presentation of growth-factor-mimicking peptides. SQBs displaying 38 BDNF-mimicking peptides at 5 nm intervals enhanced the neuronal differentiation of human mesenchymal stem cells. Dual-ligand presentation was validated using fluorescein isothiocyanate and cyanine5.5, demonstrating ratio-controlled conjugation and colocalized delivery within single cells. In a sciatic nerve injury model, BDNF-functionalized SQBs modestly improved functional recovery, reduced muscle atrophy, and enhanced remyelination compared to the untreated crush group. Histological analysis revealed increased myelin sheath thickness and improved axonal integrity. These findings underscore potential SQBs as programmable and spatially precise delivery systems for neuroregenerative therapies and broader tissue repair strategies.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.titleDNA Nanostructures for Modular Growth Factor Delivery and Peripheral Nerve Repair-
dc.typeArticle-
dc.identifier.doi10.1021/acs.nanolett.5c03151-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNano Letters, v.25, no.41, pp.14859 - 14871-
dc.citation.titleNano Letters-
dc.citation.volume25-
dc.citation.number41-
dc.citation.startPage14859-
dc.citation.endPage14871-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001585991300001-
dc.identifier.scopusid2-s2.0-105018712966-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusMESENCHYMAL STEM-CELLS-
dc.subject.keywordPlusNEUROTROPHIC FACTOR-
dc.subject.keywordPlusSTROMAL CELLS-
dc.subject.keywordPlusNEUROGENESIS-
dc.subject.keywordPlusDIFFERENTIATION-
dc.subject.keywordPlusTRANSPLANTATION-
dc.subject.keywordPlusMIGRATION-
dc.subject.keywordAuthorDNA nanostructures-
dc.subject.keywordAuthorgrowth-factor-mimicking peptide-
dc.subject.keywordAuthormodular platform-
dc.subject.keywordAuthorperipheral nerve repair-
dc.subject.keywordAuthordual-ligand codelivery-
Appears in Collections:
KIST Article > 2025
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE