Full metadata record

DC Field Value Language
dc.contributor.authorPaik, Heewon-
dc.contributor.authorKim, Dohyun-
dc.contributor.authorLim, Junil-
dc.contributor.authorSeo, Haengha-
dc.contributor.authorKim, Tae Kyun-
dc.contributor.authorShin, Jong Hoon-
dc.contributor.authorSong, Haewon-
dc.contributor.authorYoon, Hansub-
dc.contributor.authorKwon, Dae Seon-
dc.contributor.authorKim, Dong Gun-
dc.contributor.authorChoi, Jung-Hae-
dc.contributor.authorHwang, Cheol Seong-
dc.date.accessioned2025-11-17T07:00:52Z-
dc.date.available2025-11-17T07:00:52Z-
dc.date.created2025-11-11-
dc.date.issued2025-10-
dc.identifier.issn2050-7526-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/153503-
dc.description.abstractThis study examines the chemical and electrical properties of RuO2/SrTiO3 (STO)/Ru and RuO2/STO/GeO2/Ru capacitors to elucidate the effect that a 6 & Aring;-thick GeO2 interfacial layer has on current leakage. The insertion of GeO2 at the STO/Ru interface effectively suppresses microstructural defect formation during STO deposition and post deposition annealing, which is a principal contributor to high leakage current. The Schottky barrier height increases from 0.32 eV (STO) to 0.74 eV (STO/GeO2), and the internal bias is alleviated from 0.9 V to 0.3 V, attributable to the improved STO/Ru contact properties obtained through preservation of the RuO2-x interfacial layer and by facilitating oxygen vacancy curing. Consequently, the STO/GeO2 material achieves a minimum equivalent oxide thickness of 0.40 nm at a physical thickness of 11 nm, which is a significant improvement over STO (0.69 nm at 27 nm). The conduction mechanisms under applied bias and the measured temperature of STO and STO/GeO2 were systematically analyzed, demonstrating that GeO2 interfacial engineering markedly improves dielectric performance in dynamic random access memory capacitors.-
dc.languageEnglish-
dc.publisherRoyal Society of Chemistry-
dc.titleThe leakage current suppression mechanism in a RuO2/SrTiO3/Ru capacitor induced by introduction of an ultra-thin GeO2 interfacial layer at the bottom interface-
dc.typeArticle-
dc.identifier.doi10.1039/d5tc02736e-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJournal of Materials Chemistry C, v.13, no.42, pp.21347 - 21356-
dc.citation.titleJournal of Materials Chemistry C-
dc.citation.volume13-
dc.citation.number42-
dc.citation.startPage21347-
dc.citation.endPage21356-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001585906600001-
dc.identifier.scopusid2-s2.0-105018767207-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusSTRONTIUM-TITANATE-
dc.subject.keywordPlusSRTIO3 FILMS-
dc.subject.keywordPlusDEPOSITION-
dc.subject.keywordPlusPRECURSORS-
Appears in Collections:
KIST Article > 2025
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE