Full metadata record

DC Field Value Language
dc.contributor.authorSim, Kyumin-
dc.contributor.authorSon, Hyunseok-
dc.contributor.authorYu, Seokjun-
dc.contributor.authorHwang, Hae Chul-
dc.contributor.authorSong, Jong Hyun-
dc.contributor.authorChris Baek, Seung-heon-
dc.contributor.authorPark, Hamin-
dc.date.accessioned2025-11-17T07:32:27Z-
dc.date.available2025-11-17T07:32:27Z-
dc.date.created2025-11-11-
dc.date.issued2025-11-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/153512-
dc.description.abstractEnsuring secure and energy-efficient authentication of resource-constrained devices has become a critical challenge owing to the rapid expansion of the Internet of Things (IoT) ecosystem. Physically unclonable functions (PUFs) that exploit inherent manufacturing variations to generate device-unique keys have emerged as a promising hardware-based security primitive. In this study, a PUF architecture is proposed that utilizes multi-level programming of flash memory capacitors. Reliable and reproducible binary responses are generated across multiple programmed states by extracting flat-band voltage variations from capacitance–voltage measurements. Performance is evaluated using the uniformity, P-value, inter-Hamming distance, and intra-Hamming distance, which indicated strong randomness, uniqueness, and stability. To further enhance the entropy and cryptographic strength, a hash-based message authentication code (HMAC)-based key derivation function is integrated, which transformed the PUF outputs into high-entropy pseudorandom keys. The final architecture supported key generation with zero standby power and is compatible with commercially available memory structures, thereby enabling low-cost and scalable deployment in secure IoT systems. These results highlight the potential of multi-level memory-based PUFs as a lightweight and robust solution for next-generation hardware security.-
dc.languageEnglish-
dc.publisherWiley-VCH Verlag-
dc.titleHardware Security for Edge Computing Via CMOS-Compatible Multi-Level Flash Memory with Hash-Based Key Generation-
dc.typeArticle-
dc.identifier.doi10.1002/aelm.202500484-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAdvanced Electronic Materials, v.11, no.19-
dc.citation.titleAdvanced Electronic Materials-
dc.citation.volume11-
dc.citation.number19-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.scopusid2-s2.0-105018511540-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusINTERNET-
dc.subject.keywordPlusUNCLONABLE FUNCTIONS-
dc.subject.keywordPlusAUTHENTICATION-
dc.subject.keywordPlusTECHNOLOGIES-
dc.subject.keywordPlusCHALLENGES-
dc.subject.keywordAuthorphysically unclonable function (PUF)-
dc.subject.keywordAuthorHMAC-based key derivation function (HKDF)-
dc.subject.keywordAuthormulti-level-
dc.subject.keywordAuthorflash memory-
dc.subject.keywordAuthorhash-based message authentication code (HMAC)-
Appears in Collections:
KIST Article > 2025
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE