Full metadata record

DC Field Value Language
dc.contributor.authorLee, Jegon-
dc.contributor.authorKim, Sol-
dc.contributor.authorKim, Jin Young-
dc.contributor.authorJang, Jong Hyun-
dc.contributor.authorPark, Hee-Young-
dc.contributor.authorSeo, Bora-
dc.date.accessioned2025-11-21T00:02:01Z-
dc.date.available2025-11-21T00:02:01Z-
dc.date.created2025-11-11-
dc.date.issued2025-11-
dc.identifier.issn1385-8947-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/153548-
dc.description.abstractAchieving high-efficiency polymer electrolyte water electrolysis (PEMWE) with minimal use of precious metals remains a critical challenge for clean hydrogen production. A major bottleneck is the interface resistance at the membrane-electrode-diffusion layer, especially under low catalyst loadings. Here, a simple yet powerful catalyst-integrated diffusion layer fabrication strategy is presented that enables ultralow interface resistance even at reduced Ir loadings. By directly synthesizing a TiO2-supported IrOx catalyst (TiO2-IrOx) onto Ti felt through a single-step calcination, a porous transport electrode (PTE) is constructed and serves as a high-performance anode. At an optimized Ir loading of only similar to 0.12 mg(Ir) cm(-2), the TiO2-IrOx PTE exhibits an exceptional current density of 2.54 A cm(-2) at 1.9 V, outperforming state-of-the-art benchmark electrodes. Moreover, even after a long-term durability test with ultralow loadings (<0.1 mg(Ir) cm(-2)), the ultralow interface resistance of the TiO2-IrOx PTE is maintained. As a result, the TiO2-IrOx PTE achieves a significantly high mass activity of 20 A mg(Ir)(-1) at 1.9 V, far surpassing conventional Ir-based electrodes. This work provides a compelling pathway toward reducing dependence on scarce platinum-group metals without compromising the performance of the PEMWE system.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleUltralow interface resistance in porous transport electrode for efficient polymer electrolyte membrane water electrolysis at low Ir loading-
dc.typeArticle-
dc.identifier.doi10.1016/j.cej.2025.168556-
dc.description.journalClass1-
dc.identifier.bibliographicCitationChemical Engineering Journal, v.524-
dc.citation.titleChemical Engineering Journal-
dc.citation.volume524-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001592211200001-
dc.identifier.scopusid2-s2.0-105017714138-
dc.relation.journalWebOfScienceCategoryEngineering, Environmental-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusIRIDIUM-
dc.subject.keywordPlusLAYER-
dc.subject.keywordPlusNANOCATALYSTS-
dc.subject.keywordPlusTEMPERATURE-
dc.subject.keywordPlusANODES-
dc.subject.keywordAuthorPorous transport electrode-
dc.subject.keywordAuthorLow Ir loading-
dc.subject.keywordAuthorMembrane-electrode assembly-
dc.subject.keywordAuthorPolymer electrolyte membrane water electrolysis-
dc.subject.keywordAuthorUltralow interface resistance-
Appears in Collections:
KIST Article > 2025
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE