Influence of alkaline earth metal ions on graphitization of ionically crosslinked alginates

Authors
Choi, DongcheonLee, Hae RiKim, Young MinKim, JunbeomKarnitski, AliaksandrKim, Seung HyunKim, Young-KwanLee, SunghoJoh, Han-IkKim, Sung-Soo
Issue Date
2025-11
Publisher
Elsevier BV
Citation
Chemical Engineering Journal, v.524
Abstract
Biomass-derived feedstocks have traditionally been regarded as non-graphitizable carbon precursors due to the inherently low crystallinity of carbonized biomass. Nevertheless, recent advances have highlighted the potential of biomass as a sustainable source for producing graphite, offering a promising alternative to fossil fuel-based carbon materials. Here, we present a strategy for preparing highly crystalline graphitic materials from alginate, a polysaccharide found in algae, by investigating the role of alkaline earth metal ions (i.e. Ca2+, Sr2+, and Ba2+) during thermal treatment up to 2400 degrees C. Ionic crosslinking with these ions effectively replaced the original Na+ in sodium alginate, leading to the formation of their respective carbides within the carbonized matrix during graphitization. Based on the mechanistic consideration, we verified that the subsequent thermal decomposition of the carbides converted amorphous carbon into graphitic layers, enabling the successful graphitization of nongraphitizable alginate. This mechanism stands in stark contrast to the conventional view that alginate-derived carbons are intrinsically turbostratic. In addition, all graphitic materials derived from alginates crosslinked with alkaline earth metal ions exhibited superior crystalline structures and significantly enhanced electrochemical performance as anode material in lithium-ion batteries. For instance, Sr2+-crosslinked alginate produced the most crystalline graphite and demonstrated the highest Li+ intercalation capacity of 347.1 mAh/g, establishing alginates crosslinked with alkaline earth metal ions as promising biomass-derived precursors for advanced energy storage applications.
Keywords
CATALYTIC GRAPHITIZATION; PYROLYSIS PRODUCTS; FLAME RETARDANCY; SODIUM ALGINATE; POROUS CARBON; CARBONIZATION; ENERGY; COMPOSITE; GRAPHITE; Alkaline earth metal; Ionic crosslinking; Graphitization; Lithium ion battery; Alginate
ISSN
1385-8947
URI
https://pubs.kist.re.kr/handle/201004/153550
DOI
10.1016/j.cej.2025.169634
Appears in Collections:
KIST Article > 2025
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE