Full metadata record

DC Field Value Language
dc.contributor.authorMuthurasu, Alagan-
dc.contributor.authorBalaji, Ravichandran-
dc.contributor.authorKo, Tae Hoon-
dc.contributor.authorKim, Tae Woo-
dc.contributor.authorRaj Rosyara, Yagya-
dc.contributor.authorKim, Nam Dong-
dc.contributor.authorRadhakrishnan, Sivaprakasam-
dc.contributor.authorKim, Hak Yong-
dc.date.accessioned2025-11-21T00:51:15Z-
dc.date.available2025-11-21T00:51:15Z-
dc.date.created2025-11-11-
dc.date.issued2025-11-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/153570-
dc.description.abstractIron single-atom (Fe-SA) catalysts are promising alternatives to platinum for proton-exchange membrane fuel cells (PEMFCs), but their high performance often lacks long-term stability during operation. Designing a unique Fe coordination environment beyond the traditional Fe–N4 structure in Fe–N–C catalysts could overcome current stability limitations of Pt-free catalysts, though this remains unexplored. Herein, iron single-atom catalysts embedded in carbon mesopores and integrated with hydroxylated boron nitride nanosheets (OH-BN/C/Fe-SA) exhibit enhanced oxygen reduction reaction (ORR) activity. The distinctive Fe coordination in OH-BN/C/Fe-SA markedly enhances 4e– ORR activity and selectivity, reducing H2O2 production to below 1% compared to the Fe-SA catalyst. The OH-BN/C/Fe-SA catalyst shows high cyclic stability, with less than 5 mV drop in half-wave potential (E1/2) after long cycles, making it the most stable Pt-free catalyst reported for PEMFCs. The 2D coordination structure effectively prevents demetalation of the OH-BN/C/Fe-SA catalyst, ensuring long-term stability and improved PEMFC durability. Our study lays the foundation for next-generation Pt-free catalysts for PEMFCs.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.titleAtomically Dispersed Iron on Functionalized Boron Nitride Nanosheets for Efficient Oxygen Reduction in Proton Exchange Membrane Fuel Cells-
dc.typeArticle-
dc.identifier.doi10.1021/acscatal.5c06792-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Catalysis, v.15, no.22, pp.18987 - 18994-
dc.citation.titleACS Catalysis-
dc.citation.volume15-
dc.citation.number22-
dc.citation.startPage18987-
dc.citation.endPage18994-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.scopusid2-s2.0-105020414735-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalResearchAreaChemistry-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusELECTROCATALYST-
dc.subject.keywordPlusGOLD-
dc.subject.keywordAuthorFuel Cell-
dc.subject.keywordAuthornanosheets-
dc.subject.keywordAuthorsingle atom-
dc.subject.keywordAuthorproton-exchange membrane-
dc.subject.keywordAuthorand catalysts-
Appears in Collections:
KIST Article > 2025
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE