Full metadata record

DC Field Value Language
dc.contributor.authorHan, Junhwi-
dc.contributor.authorNam, Myeong Kyun-
dc.contributor.authorShin, Seunghun-
dc.contributor.authorCho, Iaan-
dc.contributor.authorJeon, Hotae-
dc.contributor.authorHeo, Jaewon-
dc.contributor.authorLee, Jaehyun-
dc.contributor.authorCho, Min Kyung-
dc.contributor.authorPreston, Daniel J.-
dc.contributor.authorHersam, Mark C.-
dc.contributor.authorKim, In Soo-
dc.contributor.authorShong, Bonggeun-
dc.contributor.authorLee, Won-Kyu-
dc.date.accessioned2025-11-21T01:01:14Z-
dc.date.available2025-11-21T01:01:14Z-
dc.date.created2025-11-11-
dc.date.issued2025-11-
dc.identifier.issn0002-7863-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/153576-
dc.description.abstractA design methodology is presented here for MoTex/Ni(OH)2 heterostructured catalysts that enhance the oxygen evolution reaction (OER) in water electrolysis. This approach relies on the transfer of mechanically exfoliated MoTe2 nanosheets to Au/Si substrates followed by electrochemical Te dissolution to induce defect-mediated, partial semiconducting (2H) to metallic (1T’) phase transitions. Immersing the resulting MoTex into a nickel nitrate hydrate solution results in a heterostructure consisting of 2H-MoTex/Ni(OH)2 and 1T’-MoTex/Ni(OH)2 domains, which enables high stability and improved efficiency for the OER compared to IrOx. Both machine-learning potential and density functional theory calculations searched and evaluated all atomic sites for this materials system, thus revealing the enhancement mechanisms of OER via four-electron transfer processes with lowered free energy barriers in the rate-determining steps.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.titleEfficient and Stable Electrocatalytic Oxygen Evolution from MoTex/Ni(OH)2 Heterostructures-
dc.typeArticle-
dc.identifier.doi10.1021/jacs.5c15520-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJournal of the American Chemical Society, v.147, no.44, pp.41096 - 41108-
dc.citation.titleJournal of the American Chemical Society-
dc.citation.volume147-
dc.citation.number44-
dc.citation.startPage41096-
dc.citation.endPage41108-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001599163100001-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.type.docTypeArticle-
dc.subject.keywordPlusINTRINSIC ACTIVITY-
dc.subject.keywordPlusPHASE-TRANSITION-
dc.subject.keywordPlusMOS2-
dc.subject.keywordPlusNANOCOMPOSITE-
dc.subject.keywordPlusSTABILITY-
dc.subject.keywordPlusELECTRODE-
Appears in Collections:
KIST Article > 2025
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE