Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Sun, Chirong | - |
| dc.contributor.author | Sohn, Yurim | - |
| dc.contributor.author | Hussain, Muhammad Shakir | - |
| dc.contributor.author | Kim, Wooyul | - |
| dc.contributor.author | Oh, Hyung-Suk | - |
| dc.contributor.author | Ahmed, Sheraz | - |
| dc.contributor.author | Kim, Jaehoon | - |
| dc.date.accessioned | 2025-11-21T02:25:04Z | - |
| dc.date.available | 2025-11-21T02:25:04Z | - |
| dc.date.created | 2025-11-11 | - |
| dc.date.issued | 2025-10 | - |
| dc.identifier.issn | 1944-8244 | - |
| dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/153596 | - |
| dc.description.abstract | The selective electroreduction of CO2 to CO is an attractive avenue for storing intermittent renewable energy. Although designing a precise confining microenvironment for active sites is challenging, most CO2-to-CO catalysts are developed by considering the potential of structural reconstruction. Herein, we report encapsulating Ni within nitrogen-doped carbon nanotubes (NCNTs) as an effective strategy for improving CO2 adsorption and catalytic activity. The Ni/NCNT catalyst exhibited a faradaic efficiency exceeding 99.4% for the conversion of CO2 into CO, with a current density of −27.73 mA cm–2 at −3.0 V under high-pressure conditions (8.0 MPa). The high CO selectivity (>99.2%) and low potential (−3.0 V) were maintained during long-term operation (12 h) at 6.0 MPa. Two strategies were used to produce CO in a highly selective manner: the first involved designing Ni/NCNTs that maintain good CO selectivity, while the second involved developing a high-pressure CO2RR system that delivers a superior local CO2 concentration and suppresses the competing hydrogen-evolution reaction. The synergy between these two strategies led to the production of CO via stable and efficient CO2 reduction. The Ni/NCNT catalyst promotes the linear adsorption of CO while suppressing the bridged-adsorption mode on the catalyst surface. | - |
| dc.language | English | - |
| dc.publisher | American Chemical Society | - |
| dc.title | Highly Selective Pressure-Driven Electrochemical Conversion of CO2 into CO over Nickel-Encapsulated Nitrogen-Doped Carbon Nanotubes | - |
| dc.type | Article | - |
| dc.identifier.doi | 10.1021/acsami.5c12372 | - |
| dc.description.journalClass | 1 | - |
| dc.identifier.bibliographicCitation | ACS Applied Materials & Interfaces, v.17, no.41, pp.57022 - 57034 | - |
| dc.citation.title | ACS Applied Materials & Interfaces | - |
| dc.citation.volume | 17 | - |
| dc.citation.number | 41 | - |
| dc.citation.startPage | 57022 | - |
| dc.citation.endPage | 57034 | - |
| dc.description.isOpenAccess | N | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.identifier.wosid | 001589105000001 | - |
| dc.identifier.scopusid | 2-s2.0-105018718339 | - |
| dc.relation.journalWebOfScienceCategory | Nanoscience & Nanotechnology | - |
| dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
| dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
| dc.relation.journalResearchArea | Materials Science | - |
| dc.type.docType | Article | - |
| dc.subject.keywordPlus | REDUCTION | - |
| dc.subject.keywordPlus | ELECTROREDUCTION | - |
| dc.subject.keywordPlus | METAL | - |
| dc.subject.keywordPlus | BICARBONATE | - |
| dc.subject.keywordPlus | ELECTRODES | - |
| dc.subject.keywordPlus | DIOXIDE | - |
| dc.subject.keywordPlus | CATALYSTS | - |
| dc.subject.keywordPlus | STATE | - |
| dc.subject.keywordPlus | OXIDE | - |
| dc.subject.keywordPlus | AU | - |
| dc.subject.keywordAuthor | carbon nanotubes | - |
| dc.subject.keywordAuthor | electrochemicalCO(2) reduction | - |
| dc.subject.keywordAuthor | high pressure | - |
| dc.subject.keywordAuthor | CO production | - |
| dc.subject.keywordAuthor | in situ SEIRAS | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.