Full metadata record

DC Field Value Language
dc.contributor.authorJang, Jeong-Un-
dc.contributor.authorSo, Jungseob-
dc.contributor.authorHeo, Huiryung-
dc.contributor.authorYoo, Chun-Jae-
dc.contributor.authorYou, Young Woo-
dc.contributor.authorKim, Young Jin-
dc.contributor.authorKoh, Dong-Yeun-
dc.date.accessioned2025-11-21T02:33:00Z-
dc.date.available2025-11-21T02:33:00Z-
dc.date.created2025-11-11-
dc.date.issued2025-10-
dc.identifier.issn1385-8947-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/153600-
dc.description.abstractTailoring anchoring sites in Al2O3 to strengthen metal-support interactions (MSI) remains a challenge yet essential for designing robust single-atom catalysts. Herein, nanosheet-stacked amorphous alumina (mAl2O3) with enhanced surface area and abundant hydroxyl groups was prepared by controlling the thermal treatment protocol of an Al-containing MOF. Loading 1 wt% Ag onto mAl2O3 led to atomically dispersed Ag species due to strong MSI, enabled by effective anchoring onto terminal hydroxyl groups uniquely distributed on mAl2O3, where both OH-μ1-AlIV and OH-μ1-AlVI sites coexist, unlike conventional Al2O3, predominantly featuring OH-μ1-AlVI alone. In hydrocarbon selective catalytic reduction, Ag(1)/mAl2O3 demonstrated markedly higher deNOx activity, exceptional water resistance, and durability. Detailed surface studies confirmed the facilitated formation of reactive enolic species and surface nitrates (NO3−) on Ag(1)/mAl2O3, which accelerated isocyanate (−NCO) formation, the key intermediate for selective NOx reduction. This work introduces an innovative method to produce Al2O3 with tunable surface structures, fostering highly active single-atom catalysts.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleAtomically dispersed silver on nanosheet-stacked amorphous alumina for enhanced NOx reduction-
dc.typeArticle-
dc.identifier.doi10.1016/j.cej.2025.167052-
dc.description.journalClass1-
dc.identifier.bibliographicCitationChemical Engineering Journal, v.521-
dc.citation.titleChemical Engineering Journal-
dc.citation.volume521-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001583154500022-
dc.identifier.scopusid2-s2.0-105013246555-
dc.relation.journalWebOfScienceCategoryEngineering, Environmental-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusSELECTIVE CATALYTIC-REDUCTION-
dc.subject.keywordPlusMETAL-ORGANIC FRAMEWORKS-
dc.subject.keywordPlusAG/AL2O3 CATALYST-
dc.subject.keywordPlusGAMMA-ALUMINA-
dc.subject.keywordPlusDENOX PERFORMANCE-
dc.subject.keywordPlusWATER TOLERANCE-
dc.subject.keywordPlusAL3+ IONS-
dc.subject.keywordPlusSURFACE-
dc.subject.keywordPlusPLATINUM-
dc.subject.keywordPlusETHANOL-
dc.subject.keywordAuthorMOF-derived alumina-
dc.subject.keywordAuthorSingle atom catalyst-
dc.subject.keywordAuthorTerminal hydroxyls-
dc.subject.keywordAuthorNOx conversion-
dc.subject.keywordAuthorSilver-
Appears in Collections:
KIST Article > 2025
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE