Full metadata record

DC Field Value Language
dc.contributor.authorJeon, Jiho-
dc.contributor.authorBang, Hyeon-Seok-
dc.contributor.authorKo, Young-Jin-
dc.contributor.authorHuh, Eugene-
dc.contributor.authorKang, Jinsu-
dc.contributor.authorZhang, Xiaojie-
dc.contributor.authorKa, Seohyeon-
dc.contributor.authorKim, Yeongjin-
dc.contributor.authorLee, Woong Hee-
dc.contributor.authorKim, Kyeongsu-
dc.contributor.authorYu, Hak Ki-
dc.contributor.authorOh, Hyung-Suk-
dc.contributor.authorChoi, Jae-Young-
dc.date.accessioned2025-11-21T02:42:21Z-
dc.date.available2025-11-21T02:42:21Z-
dc.date.created2025-11-11-
dc.date.issued2025-11-
dc.identifier.issn1385-8947-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/153605-
dc.description.abstractThe electrochemical reduction of CO2 to formate represents a promising strategy for carbon mitigation and energy storage. However, achieving selectivity and productivity at industrially relevant current densities remains a critical challenge. Herein, we report a defect-engineered bismuth electrocatalyst with abundant surface oxygen vacancies (OV-Bi), synthesized via electrochemical reduction of exfoliated one-dimensional BiSI—a van der Waals materials. The facile removal of sulfur and iodine during reduction promotes the formation of oxygen vacancies, which lower the energy barrier for *OCHO intermediate formation, thereby steering the reaction pathway toward formate. The resulting OV-Bi electrode exhibits a record-high partial current density for formate production of 465.7 mA cm−2 on a 5 cm2 electrode, while maintaining Faradaic efficiency above 90 % and stable operation for over 24 h at 100 mA cm−2. Electron spin resonance spectroscopy confirmed a substantial increase in oxygen vacancy concentration, and in situ/Operando X-ray absorption spectroscopy revealed dynamic electronic structure evolution under CO2RR conditions. These findings demonstrate that oxygen vacancy engineering significantly enhances catalytic CO2 adsorption and reduction, offering a viable strategy for designing next-generation high-performance electrocatalysts for scalable CO2-to-formate electrolysis.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleTailoring oxygen vacancies on bismuth using one-dimensional BiSI for efficient CO2 electrolysis to formate-
dc.typeArticle-
dc.identifier.doi10.1016/j.cej.2025.168350-
dc.description.journalClass1-
dc.identifier.bibliographicCitationChemical Engineering Journal, v.523-
dc.citation.titleChemical Engineering Journal-
dc.citation.volume523-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001583664600002-
dc.identifier.scopusid2-s2.0-105015684044-
dc.relation.journalWebOfScienceCategoryEngineering, Environmental-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusREDUCTION-
dc.subject.keywordPlusMETALS-
dc.subject.keywordPlusOXIDE-
dc.subject.keywordPlusACID-
dc.subject.keywordAuthorOne-dimensional (1D) materials-
dc.subject.keywordAuthorOxygen vacancy-
dc.subject.keywordAuthorElectrocatalysts-
dc.subject.keywordAuthorCO2 reduction reaction (CO2RR)-
dc.subject.keywordAuthorFormate-
dc.subject.keywordAuthorBiSI-
Appears in Collections:
KIST Article > 2025
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE