Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Jeon, Jiho | - |
| dc.contributor.author | Bang, Hyeon-Seok | - |
| dc.contributor.author | Ko, Young-Jin | - |
| dc.contributor.author | Huh, Eugene | - |
| dc.contributor.author | Kang, Jinsu | - |
| dc.contributor.author | Zhang, Xiaojie | - |
| dc.contributor.author | Ka, Seohyeon | - |
| dc.contributor.author | Kim, Yeongjin | - |
| dc.contributor.author | Lee, Woong Hee | - |
| dc.contributor.author | Kim, Kyeongsu | - |
| dc.contributor.author | Yu, Hak Ki | - |
| dc.contributor.author | Oh, Hyung-Suk | - |
| dc.contributor.author | Choi, Jae-Young | - |
| dc.date.accessioned | 2025-11-21T02:42:21Z | - |
| dc.date.available | 2025-11-21T02:42:21Z | - |
| dc.date.created | 2025-11-11 | - |
| dc.date.issued | 2025-11 | - |
| dc.identifier.issn | 1385-8947 | - |
| dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/153605 | - |
| dc.description.abstract | The electrochemical reduction of CO2 to formate represents a promising strategy for carbon mitigation and energy storage. However, achieving selectivity and productivity at industrially relevant current densities remains a critical challenge. Herein, we report a defect-engineered bismuth electrocatalyst with abundant surface oxygen vacancies (OV-Bi), synthesized via electrochemical reduction of exfoliated one-dimensional BiSI—a van der Waals materials. The facile removal of sulfur and iodine during reduction promotes the formation of oxygen vacancies, which lower the energy barrier for *OCHO intermediate formation, thereby steering the reaction pathway toward formate. The resulting OV-Bi electrode exhibits a record-high partial current density for formate production of 465.7 mA cm−2 on a 5 cm2 electrode, while maintaining Faradaic efficiency above 90 % and stable operation for over 24 h at 100 mA cm−2. Electron spin resonance spectroscopy confirmed a substantial increase in oxygen vacancy concentration, and in situ/Operando X-ray absorption spectroscopy revealed dynamic electronic structure evolution under CO2RR conditions. These findings demonstrate that oxygen vacancy engineering significantly enhances catalytic CO2 adsorption and reduction, offering a viable strategy for designing next-generation high-performance electrocatalysts for scalable CO2-to-formate electrolysis. | - |
| dc.language | English | - |
| dc.publisher | Elsevier BV | - |
| dc.title | Tailoring oxygen vacancies on bismuth using one-dimensional BiSI for efficient CO2 electrolysis to formate | - |
| dc.type | Article | - |
| dc.identifier.doi | 10.1016/j.cej.2025.168350 | - |
| dc.description.journalClass | 1 | - |
| dc.identifier.bibliographicCitation | Chemical Engineering Journal, v.523 | - |
| dc.citation.title | Chemical Engineering Journal | - |
| dc.citation.volume | 523 | - |
| dc.description.isOpenAccess | N | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.identifier.wosid | 001583664600002 | - |
| dc.identifier.scopusid | 2-s2.0-105015684044 | - |
| dc.relation.journalWebOfScienceCategory | Engineering, Environmental | - |
| dc.relation.journalWebOfScienceCategory | Engineering, Chemical | - |
| dc.relation.journalResearchArea | Engineering | - |
| dc.type.docType | Article | - |
| dc.subject.keywordPlus | REDUCTION | - |
| dc.subject.keywordPlus | METALS | - |
| dc.subject.keywordPlus | OXIDE | - |
| dc.subject.keywordPlus | ACID | - |
| dc.subject.keywordAuthor | One-dimensional (1D) materials | - |
| dc.subject.keywordAuthor | Oxygen vacancy | - |
| dc.subject.keywordAuthor | Electrocatalysts | - |
| dc.subject.keywordAuthor | CO2 reduction reaction (CO2RR) | - |
| dc.subject.keywordAuthor | Formate | - |
| dc.subject.keywordAuthor | BiSI | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.