Full metadata record

DC Field Value Language
dc.contributor.authorKang, Byungsoo-
dc.contributor.authorKoo, Bonkee-
dc.contributor.authorPark, Hee Jeong-
dc.contributor.authorKim, Wooyeon-
dc.contributor.authorYoo, Yongseok-
dc.contributor.authorKim, Jaeyeon-
dc.contributor.authorBae, Seunghwan-
dc.contributor.authorKo, Min Jae-
dc.contributor.authorLee, Phillip-
dc.contributor.authorJung, Heesuk-
dc.date.accessioned2025-11-21T02:57:25Z-
dc.date.available2025-11-21T02:57:25Z-
dc.date.created2025-11-11-
dc.date.issued2025-10-
dc.identifier.issn1614-6832-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/153613-
dc.description.abstractPhenethylammonium (PEA+) has been extensively used for defect passivation, enhancing the photovoltaic performance of perovskite solar cells (PSCs) by forming a quasi-2D perovskite layer atop the 3D perovskite. However, the ionic nature of PEA+ renders it prone to deprotonation at elevated temperatures, generating neutral PEA0, which exhibits strong nucleophilicity and easily reacts with formamidinium cations (FA+) in the 3D perovskite. This reaction accelerates perovskite degradation, thereby deteriorating photovoltaic properties and long-term stability. Here, N,N-dimethylbenzenesulfonamide (DMBSA), a nonionic binary compound synthesized via a simple process, is applied as a defect passivation material. Unlike PEA+, DMBSA remains thermally stable due to strong covalent bonding and does not undergo deprotonation at elevated temperatures. Moreover, its lower nucleophilicity prevents undesirable reactions with FA+, significantly mitigating perovskite degradation. Consequently, DMBSA-passivated PSCs maintain 96.1 +/- 0.8% of their initial photoconversion efficiency (PCE) after 1500 h of thermal stress at 85 degrees C, compared to only 64.0 +/- 0.19% for PEA+-passivated PSCs. Furthermore, DMBSA passivation effectively suppresses nonradiative recombination, while its dipole moment induces an electrical field, facilitating efficient hole transfer to the hole transporting layer. As a result, DMBSA-passivated PSC achieves a PCE of 25.43% (certified 25.1%), substantially outperforming pristine PSC (22.07%).-
dc.languageEnglish-
dc.publisherWiley-VCH Verlag-
dc.titleEnhanced Thermal Stability in Perovskite Solar Cells via the Integration of a Nonionic Binary Compound-
dc.typeArticle-
dc.identifier.doi10.1002/aenm.202503429-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAdvanced Energy Materials-
dc.citation.titleAdvanced Energy Materials-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.scopusid2-s2.0-105020473436-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusCATION PEROVSKITE-
dc.subject.keywordPlusPASSIVATION-
dc.subject.keywordPlusEFFICIENT-
dc.subject.keywordPlusSURFACE-
dc.subject.keywordAuthornonionic character-
dc.subject.keywordAuthorperovskite solar cells-
dc.subject.keywordAuthorthermal stability-
dc.subject.keywordAuthorbinary compound-
dc.subject.keywordAuthordefect passivation-
Appears in Collections:
KIST Article > 2025
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE