Full metadata record

DC Field Value Language
dc.contributor.authorChoi, Juhyung-
dc.contributor.authorPark, Sejin-
dc.contributor.authorKim, Dayeon-
dc.contributor.authorKim, Hyun Chul-
dc.contributor.authorYun, Hyewon-
dc.contributor.authorHong, Yewon-
dc.contributor.authorAn, Hyun Ji-
dc.contributor.authorLee, Taemin-
dc.contributor.authorLee, Noho-
dc.contributor.authorKim, Jaeeun-
dc.contributor.authorNam, Dae-Hyun-
dc.contributor.authorOh, Hyung-Suk-
dc.contributor.authorHwang, Yun Jeong-
dc.date.accessioned2025-11-21T02:59:07Z-
dc.date.available2025-11-21T02:59:07Z-
dc.date.created2025-11-11-
dc.date.issued2025-10-
dc.identifier.issn1530-6984-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/153614-
dc.description.abstractAchieving stable operation at high currents remains challenging for gas diffusion electrode (GDE)-based CO electrolyzers. Herein, we demonstrate the importance of Cu nanoparticle infiltration into the microporous layer to enrich local CO accessibility and mitigate electrolyte crossover. A facile GDE preparation method is developed via the doctor-blading method using a Cu metal-organic decomposition (Cu MOD) ink to produce well-dispersed nanoparticles across the porous layer. This design produces highly selective C2+ products at -1200 mA cm-2 from the CO electroreduction reaction, achieving a remarkably high mass activity of approximately -28,000 A g-1. It is found that the Cu electrodes prepared by MOD improve a stable balanced gas-liquid-solid interface by CO transport across the hydrophobic microenvironment of the inherent microporous layer. Our insights offer perspectives on a scalable strategy for optimizing catalyst positioning and advancing stable GDEs with high mass activity.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.titleCu Nanoparticle Infiltration via Metal-Organic Decomposition Ink for Superior Mass Activity in CO Electroreduction-
dc.typeArticle-
dc.identifier.doi10.1021/acs.nanolett.5c04051-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNano Letters, v.25, no.42, pp.15346 - 15352-
dc.citation.titleNano Letters-
dc.citation.volume25-
dc.citation.number42-
dc.citation.startPage15346-
dc.citation.endPage15352-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001591518300001-
dc.identifier.scopusid2-s2.0-105019504117-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusCARBON-DIOXIDE-
dc.subject.keywordPlusREDUCTION-
dc.subject.keywordPlusPRODUCTS-
dc.subject.keywordPlusOPERANDO-
dc.subject.keywordAuthorCu metal-organic decomposition ink-
dc.subject.keywordAuthorMicroporouslayer-
dc.subject.keywordAuthorHydrophobicity-
dc.subject.keywordAuthorCORR-
Appears in Collections:
KIST Article > 2025
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE