Full metadata record

DC Field Value Language
dc.contributor.authorKim, Shin-Yeong-
dc.contributor.authorCho, Hyeonwoo-
dc.contributor.authorKim, Seong-Jun-
dc.contributor.authorAhn, Minchul-
dc.contributor.authorJeoun, Yunseo-
dc.contributor.authorKim, Kookhan-
dc.contributor.authorCho, Sung-Pyo-
dc.contributor.authorKim, So Hee-
dc.contributor.authorSon, Gi Young-
dc.contributor.authorYu, Seung-Ho-
dc.contributor.authorHong, Byung Hee-
dc.contributor.authorSung, Yung-Eun-
dc.date.accessioned2025-11-21T03:05:36Z-
dc.date.available2025-11-21T03:05:36Z-
dc.date.created2025-11-11-
dc.date.issued2025-09-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/153617-
dc.description.abstractAchieving 3D Li2S morphologies and accelerating polysulfide conversion reactions are critical for realizing high-energy lithium–sulfur (Li–S) batteries. Although electrolytes containing high Gutmann donor number components facilitate transition from film-like to 3D Li2S morphologies, challenges arising from polysulfide diffusion and incomplete polysulfide conversion remain unresolved. Catalyst design strategies optimized for high donor electrolyte systems are essential in overcoming these limitations, yet they have garnered limited attention. Here, the influence of catalytic site distribution is systematically investigated as a key variable in catalyst design principles for high donor systems, aiming to achieve high-capacity and stable Li–S battery operation. Two types of carbon model systems are designed and employed in Li–S cells. One type features widespread distribution of catalytic sites, whereas the other incorporates localized catalytic sites. Experimental results demonstrate that spatial confinement of catalytic sites facilitates effective polysulfide redox reactions and supports the formation of 3D Li2S morphologies, even more pronounced in high donor electrolytes, thereby achieving near-theoretical capacity of sulfur (1630 mA h g−1) and ensuring stable cycling. These findings highlight that spatial control of catalytic sites is a key parameter for optimizing next-generation Li–S battery performances, offering novel design principles for advanced battery systems.-
dc.languageEnglish-
dc.publisherWiley-VCH Verlag-
dc.titleExploring the Effects of the Spatial Distribution of Catalytic Sites on Sulfur Nucleation Behaviors and Electrochemical Performances of Lithium–Sulfur Batteries-
dc.typeArticle-
dc.identifier.doi10.1002/advs.202513026-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAdvanced Science-
dc.citation.titleAdvanced Science-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.scopusid2-s2.0-105017846216-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusWALLED CARBON NANOTUBES-
dc.subject.keywordPlusGRAPHENE QUANTUM DOTS-
dc.subject.keywordPlusSURFACE-
dc.subject.keywordPlusFLUORESCENCE-
dc.subject.keywordPlusREDUCTION-
dc.subject.keywordPlusKINETICS-
dc.subject.keywordPlusGROWTH-
dc.subject.keywordPlusLI2S-
dc.subject.keywordAuthorgraphene quantum dots-
dc.subject.keywordAuthorhigh donor electrolytes-
dc.subject.keywordAuthorlithium-sulfur batteries-
dc.subject.keywordAuthornucleation behaviors-
dc.subject.keywordAuthorspatial distributions-
Appears in Collections:
KIST Article > 2025
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE