Full metadata record

DC Field Value Language
dc.contributor.authorPark, Seoungmin-
dc.contributor.authorKim, Eun A.-
dc.contributor.authorJu, Gijun-
dc.contributor.authorChoi, Sinwon-
dc.contributor.authorJeong, Hyunji-
dc.contributor.authorHan, Jae-Hoon-
dc.contributor.authorAhn, Dae-Hwan-
dc.contributor.authorKim, Jaekyun-
dc.contributor.authorShim, Moonsub-
dc.contributor.authorYang, Heesun-
dc.contributor.authorCho, Seong-Yong-
dc.contributor.authorKim, Younghyun-
dc.date.accessioned2025-11-26T09:34:35Z-
dc.date.available2025-11-26T09:34:35Z-
dc.date.created2025-11-26-
dc.date.issued2025-11-
dc.identifier.issn1944-8244-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/153660-
dc.description.abstractThe advancement of ultrahigh-resolution displays and extended reality applications has driven increasing demand for compact and low-power device architectures capable of simultaneously performing memory and light-emission functions at the pixel level. To address this need, charge-trap thin-film transistors (CTTFTs) based on oxide semiconductors have attracted attention as promising nonvolatile memory elements due to their excellent electrical performance and compatibility with large-area fabrication processes. In this study, we propose a memory-in-pixel (MIP) device that monolithically integrates a CTTFT and a quantum dot light-emitting diode (QD-LED) within a single pixel. The fabricated CTTFT, employing an Al2O3/HfO2/Al2O3 gate dielectric and an oxide channel, achieved a field-effect mobility of 22.1 cm2/V<middle dot>s, a subthreshold swing of 99.1 mV/dec, an on/off current ratio exceeding 109, and a wide memory window of 6.06 V. To enable self-erasing functionality, a QD-LED was monolithically integrated on top of the CTTFT using a photolithography-based lift-off process. The resulting QD-LEDs demonstrated EQEs of 20.9%, 6.5%, and 1.7% for red, green, and blue, respectively. Notably, ZnSeTe-based Cd-free QD-LEDs achieved an erasing efficiency of similar to 60%, outperforming their Cd-based counterparts. This hybrid MIP architecture operates without external erase components and offers a compact, environmentally friendly platform suitable for next-generation high-resolution display applications.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.titleIntegration of Quantum Dot Light-Emitting Diodes and Charge Trap Thin-Film Transistor Arrays for Memory-In-Pixel Applications-
dc.typeArticle-
dc.identifier.doi10.1021/acsami.5c13831-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Applied Materials & Interfaces-
dc.citation.titleACS Applied Materials & Interfaces-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusOXIDE SEMICONDUCTORS-
dc.subject.keywordPlusLAYER-
dc.subject.keywordPlusHFO2-
dc.subject.keywordPlusCRYSTALLINE-
dc.subject.keywordPlusTECHNOLOGY-
dc.subject.keywordPlusABSORPTION-
dc.subject.keywordPlusTFTS-
dc.subject.keywordAuthorcharge trap thin-film transistor-
dc.subject.keywordAuthorquantum dot light-emittingdiodes-
dc.subject.keywordAuthoramorphous oxide TFT-
dc.subject.keywordAuthorhigh-resolution display-
dc.subject.keywordAuthormonolithic integration-
Appears in Collections:
KIST Article > 2025
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE