Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Kim, Jong Hun | - |
| dc.contributor.author | Cho, Hunyoung | - |
| dc.contributor.author | Yoon, Hongyeon | - |
| dc.contributor.author | Lee, Dooho | - |
| dc.contributor.author | Choi, Joong Il Jake | - |
| dc.contributor.author | Jung, Jong Hoon | - |
| dc.contributor.author | Kim, Sang Hoon | - |
| dc.contributor.author | Park, Jeong Young | - |
| dc.date.accessioned | 2025-11-26T10:03:02Z | - |
| dc.date.available | 2025-11-26T10:03:02Z | - |
| dc.date.created | 2025-11-26 | - |
| dc.date.issued | 2025-11 | - |
| dc.identifier.issn | 0021-9606 | - |
| dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/153676 | - |
| dc.description.abstract | Water adsorption and phase transitions on NaCl surfaces before dissolution play a crucial role in understanding interfacial water–solid interactions. In this study, we employ variable-pressure scanning probe microscopy (SPM) to systematically investigate nanoscale morphological and tribological changes across a wide range of relative humidity (RH). At extremely low RH (<10−2%), water shows a strong affinity for Na+ ions, leading to increased friction, particularly at surface defects such as step edges. As RH increases to several tens of percent, this high-friction region expands across entire terrace areas. Below ∼40% RH, hydrated ion clusters form, locally reducing friction due to their liquid-like nature. Above ∼40% RH, these hydrated ion clusters disperse, resulting in a global decrease in surface friction. At higher RH levels, increased lubrication facilitates NaCl nanostructure movement, reducing pre-existing surface anisotropy and accelerating dissolution dynamics until deliquescence (∼75% RH). Our findings indicate that Cl− ion release is enhanced by water clusters, while strongly bonded Na+ ions remain exposed, acting as preferential sites for further adsorption. By utilizing SPM across a broad RH spectrum (10−7 to ∼75%), this study provides new insights into the fundamental nanoscale mechanisms governing water adsorption, phase changes, and dissolution at the NaCl–water interface. | - |
| dc.language | English | - |
| dc.publisher | American Institute of Physics | - |
| dc.title | Water–solid interactions on NaCl: Tracking adsorption to deliquescence with in situ scanning probe microscopy under a wide range of water vapor pressure | - |
| dc.type | Article | - |
| dc.identifier.doi | 10.1063/5.0288046 | - |
| dc.description.journalClass | 1 | - |
| dc.identifier.bibliographicCitation | The Journal of Chemical Physics, v.163, no.17 | - |
| dc.citation.title | The Journal of Chemical Physics | - |
| dc.citation.volume | 163 | - |
| dc.citation.number | 17 | - |
| dc.description.isOpenAccess | N | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.identifier.wosid | 001612082600001 | - |
| dc.identifier.scopusid | 2-s2.0-105021069441 | - |
| dc.relation.journalWebOfScienceCategory | Chemistry, Physical | - |
| dc.relation.journalWebOfScienceCategory | Physics, Atomic, Molecular & Chemical | - |
| dc.relation.journalResearchArea | Chemistry | - |
| dc.relation.journalResearchArea | Physics | - |
| dc.type.docType | Article | - |
| dc.subject.keywordPlus | ATOMIC-FORCE MICROSCOPY | - |
| dc.subject.keywordPlus | FUNDAMENTAL-ASPECTS | - |
| dc.subject.keywordPlus | PHASE-TRANSITIONS | - |
| dc.subject.keywordPlus | SILICON-OXIDE | - |
| dc.subject.keywordPlus | LATERAL FORCE | - |
| dc.subject.keywordPlus | DISSOLUTION | - |
| dc.subject.keywordPlus | NACL(100) | - |
| dc.subject.keywordPlus | FRICTION | - |
| dc.subject.keywordPlus | SURFACES | - |
| dc.subject.keywordPlus | BEHAVIOR | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.