Full metadata record

DC Field Value Language
dc.contributor.authorPark, Jimin-
dc.contributor.authorJeong, Min-Gi-
dc.contributor.authorAlfaruqi, Muhammad Hilmy-
dc.contributor.authorKurniawan, Muhamad-
dc.contributor.authorXiong, Shizhao-
dc.contributor.authorKansara, Shivam-
dc.contributor.authorKim, Hyerim-
dc.contributor.authorPark, Hyeona-
dc.contributor.authorKim, Jaekook-
dc.contributor.authorLee, Chan-Woo-
dc.contributor.authorJung, Hun-Gi-
dc.contributor.authorHwang, Jang-Yeon-
dc.date.accessioned2025-11-26T10:30:25Z-
dc.date.available2025-11-26T10:30:25Z-
dc.date.created2025-11-26-
dc.date.issued2025-12-
dc.identifier.issn1385-8947-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/153682-
dc.description.abstractThe metallic potassium (K) is a promising anode for high-energy K-batteries, offering a high theoretical capacity (687 mAh g(-1)) and low reduction potential (-2.9 V vs. standard hydrogen electrode), but its hostless nature promotes dendrite-driven failure. Here, we report a data-driven discovery and experimental validation of a potassiophilic CuO-covered 3D-Cu current collector (CuO@3D-Cu) that suppresses dendrite formation in potassium metal batteries. A screening workflow combining a crystal graph convolutional neural network and gradient-boosted decision trees to prioritize candidates, validated the top hit with density functional theory adsorption calculations (E-ads = -4.317 eV on CuO), and COMSOL Multiphysics electrochemical-transport modeling quantified mesoscale ion-flux and current-density distributions. Models predict the 3D scaffold together with a potassiophilic surface homogenizes K+ flux and suppresses local current hotspots. Experimentally, CuO@3D-Cu exhibits no measurable nucleation overpotential versus similar to 50 mV for bare 3D-Cu, sustains symmetric cells cycling over 2000 h at a current density of 4 mA cm(-2), and enable potassium-sulfur cells with an initial specific capacity 600 mAh g(-1) and capacity retention of 68.8 % over 100 cycles. Combined modeling and experiments demonstrate that dendrite formation is governed by coupled, nonlinear electrochemical-transport instabilities: concentration-dependent reaction kinetics and local current-density amplification produce threshold behavior in nucleation and growth that is suppressed by the CuO@3D-Cu. The design combines (i) a conductive, porous 3D architecture for uniform current distribution and volumetric accommodation and (ii) a chemisorptive CuO surface to lower nucleation barriers, providing a practical route to stable, scalable K-metal anodes.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleLocking of dendrites in potassium metal batteries: A potassiophilic 3D host discovered with machine learning screening-
dc.typeArticle-
dc.identifier.doi10.1016/j.cej.2025.169977-
dc.description.journalClass1-
dc.identifier.bibliographicCitationChemical Engineering Journal, v.525-
dc.citation.titleChemical Engineering Journal-
dc.citation.volume525-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001609155200001-
dc.identifier.scopusid2-s2.0-105019743378-
dc.relation.journalWebOfScienceCategoryEngineering, Environmental-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusSULFUR BATTERIES-
dc.subject.keywordPlusDENSITY-
dc.subject.keywordPlusENERGY-
dc.subject.keywordPlusANODE-
dc.subject.keywordAuthorK-metal-
dc.subject.keywordAuthorMachine learning-
dc.subject.keywordAuthorPotassiophilic-
dc.subject.keywordAuthorCu host structure-
dc.subject.keywordAuthorCuO-
Appears in Collections:
KIST Article > 2025
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE