Full metadata record

DC Field Value Language
dc.contributor.authorLee, Junhyung-
dc.contributor.authorMoon, Sunghyun-
dc.contributor.authorPark, Yongchan-
dc.contributor.authorPark, Uijoon-
dc.contributor.authorKim, Hansol-
dc.contributor.authorKim, Changhyun-
dc.contributor.authorChoi, Minho-
dc.contributor.authorLee, Jin-Il-
dc.contributor.authorHwang, Hyeon-
dc.contributor.authorSeo, Min-Kyo-
dc.contributor.authorAhn, Dae-Hwan-
dc.contributor.authorJung, Hojoong-
dc.contributor.authorKwon, Hyounghan-
dc.date.accessioned2025-11-26T10:36:26Z-
dc.date.available2025-11-26T10:36:26Z-
dc.date.created2025-11-26-
dc.date.issued2025-11-
dc.identifier.issn2192-8606-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/153690-
dc.description.abstractNonlinear signal generation requires precise control of the input polarization to satisfy phase-matching conditions. Conventional polarization management using external fiber polarization controllers or bulk wave plates increases coupling complexity and can degrade polarization fidelity and conversion efficiency in nonlinear photonic systems. Here, we demonstrate on-chip polarization control in thin-film lithium niobate nonlinear photonic circuits. Integrated polarization modulators enable real-time tuning of arbitrary input polarization states and thus provide on-demand control of nonlinear conversion in a periodically poled lithium niobate waveguide. A closed-loop feedback system, which integrates auto-compensation and automatic fiber-chip alignment routines, automatically optimizes the second-harmonic generation intensity and maintains performance over extended periods despite polarization scrambling and environmental perturbations. This integrated approach reduces coupling complexity and offers a scalable route toward fully reconfigurable nonlinear photonic systems.-
dc.languageEnglish-
dc.publisherWALTER DE GRUYTER GMBH-
dc.titleOn-chip polarization management for stable nonlinear signal generation in thin-film lithium niobate-
dc.typeArticle-
dc.identifier.doi10.1515/nanoph-2025-0339-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNanophotonics-
dc.citation.titleNanophotonics-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.scopusid2-s2.0-105021254929-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryOptics-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaOptics-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlus2ND-HARMONIC GENERATION-
dc.subject.keywordPlusEFFICIENT-
dc.subject.keywordPlusOPTICS-
dc.subject.keywordPlusBIAS-
dc.subject.keywordAuthoron-chip polarization management-
dc.subject.keywordAuthorStokes parameter-
dc.subject.keywordAuthorlithium niobate-
dc.subject.keywordAuthorperiodically poled lithium niobate-
dc.subject.keywordAuthorsecond harmonic generation-
dc.subject.keywordAuthorfeedback loop-
Appears in Collections:
KIST Article > 2025
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE