Full metadata record

DC Field Value Language
dc.contributor.authorJunghwa Lee-
dc.contributor.authorZhelong Jiang-
dc.contributor.authorNicolas B. Liang-
dc.contributor.authorJin Hwan Kwak-
dc.contributor.authorHowie Nguyen-
dc.contributor.authorGrace M. Busse-
dc.contributor.authorYiseul Yoo-
dc.contributor.authorHari Ramachandran-
dc.contributor.authorKipil Lim-
dc.contributor.authorPeter M. Csernica-
dc.contributor.authorTianyi Li-
dc.contributor.authorXin Xu-
dc.contributor.authorKyung Yoon Chung-
dc.contributor.authorKathrin Michel-
dc.contributor.authorJoop E. Frerichs-
dc.contributor.authorWilliam E. Gent-
dc.contributor.authorRaphaële J. Clément-
dc.contributor.authorJungjin Park-
dc.contributor.authorWilliam C. Chueh-
dc.date.accessioned2025-11-28T01:30:22Z-
dc.date.available2025-11-28T01:30:22Z-
dc.date.created2025-11-27-
dc.date.issued2025-11-
dc.identifier.issn2058-7546-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/153705-
dc.description.abstractLayered oxide cathodes for lithium-ion batteries typically undergo large expansion and contraction during cycling, including a particularly abrupt shrinkage along the c lattice (c-collapse) at high states of charge, which limits their lifetime. Here we suppress the c-collapse in compositionally simple LiNi0.9Mn0.1O2 by electrochemically inducing partial disorder that is permanently retained throughout the bulk. Our approach leverages irreversible oxygen oxidation in Li-excess Ni-rich oxides to activate partial disordering of the cation sublattice, while preserving the long-range layered structure. By varying the initial Li-excess, we obtain Li-stoichiometric transition-metal oxides with tunable cation disorder. Surprisingly, when the concentration of transition-metal ions occupying Li sites (TMLi) reaches ≥12%, the c-lattice parameter remains nearly invariant during (de)lithiation, reducing chemical strain, preserving microstructural integrity and extending battery cycle life. The resulting material displays high specific capacity, long-term stability, small voltage hysteresis and negligible voltage decay. This concept opens the possibility of designing materials by inducing persistent intrinsic disorder electrochemically.-
dc.languageEnglish-
dc.publisherNATURE PUBLISHING GROUP-
dc.titleEliminating lattice collapse in dopant-free LiNi0.9Mn0.1O2 cathodes via electrochemically induced partial cation disorder-
dc.typeArticle-
dc.identifier.doi10.1038/s41560-025-01910-w-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNature Energy-
dc.citation.titleNature Energy-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
Appears in Collections:
KIST Article > 2025
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE