Full metadata record

DC Field Value Language
dc.contributor.authorEjerssa, Wondesen Workneh-
dc.contributor.authorSeid, Mingizem Gashaw-
dc.contributor.authorMoon, Byeong Cheul-
dc.contributor.authorSon, Moon-
dc.contributor.authorChae, Sung Ho-
dc.contributor.authorHong, Seok Won-
dc.date.accessioned2025-12-03T01:34:19Z-
dc.date.available2025-12-03T01:34:19Z-
dc.date.created2025-11-11-
dc.date.issued2026-02-
dc.identifier.issn1383-5866-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/153729-
dc.description.abstractIn this study, we present an integrated clustering-classification machine learning (ML) model for optimizing the removal of micropollutants in water using ultraviolet-based advanced oxidation processes (UV-AOPs). We evaluated the degradation of 28 micropollutants using five UV-AOPs: UV/TiO2, UV/H2O2, UV/Fenton, UV/ peroxydisulfate (PDS), and UV/Cl-2, and thereafter, investigated the optimization of these AOPs using six ML models (Random Forest, Gradient Boosted Decision Tree, Extremely Randomized Trees, Extreme Gradient Boosting (XGBoost), Categorical Boost, and k-nearest neighbors). Among the six models, XGBoost showed superior performance, exhibiting the highest prediction accuracy (>0.9) and shortest computing time. It also provided valuable insights into the classification criteria for ensuring a high micropollutant removal rate. SHAP analysis further identified photoreactivity and controllable features (e.g., oxidant dose and type) as the key factors driving the degradation of micropollutants in different clusters. Second-order reaction rate constants (e.g., that for center dot OH in the UV/Fenton process and SO4 center dot- in the UV/PDS process) also played critical roles in specific clusters. These findings highlight the potential of ML-based optimization in facilitating the selection of appropriate process types and operating conditions for micropollutant degradation. Additionally, the application of these findings may enable a more effective evaluation of micropollutants removal efficiency in water treatment.-
dc.languageEnglish-
dc.publisherPergamon Press Ltd.-
dc.titleExploring decisive operating factors for micropollutants fate in ultraviolet-based advanced oxidation processes using the integrated clustering-classification model-
dc.typeArticle-
dc.identifier.doi10.1016/j.seppur.2025.135277-
dc.description.journalClass3-
dc.identifier.bibliographicCitationSeparation and Purification Technology, v.380, no.Part 1-
dc.citation.titleSeparation and Purification Technology-
dc.citation.volume380-
dc.citation.numberPart 1-
dc.description.isOpenAccessY-
dc.identifier.wosid001585720300001-
dc.identifier.scopusid2-s2.0-105016780690-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusWASTE-WATER EFFLUENT-
dc.subject.keywordPlusDRINKING-WATER-
dc.subject.keywordPlusDEGRADATION-
dc.subject.keywordPlusPHARMACEUTICALS-
dc.subject.keywordPlusUV/H2O2-
dc.subject.keywordPlusPRODUCTS-
dc.subject.keywordPlusKINETICS-
dc.subject.keywordPlusREMOVAL-
dc.subject.keywordPlusTRANSFORMATION-
dc.subject.keywordPlusCONTAMINANTS-
dc.subject.keywordAuthorMicropollutants-
dc.subject.keywordAuthorXGBoost-
dc.subject.keywordAuthorMachine learning-
dc.subject.keywordAuthorPhotoreactivity-
dc.subject.keywordAuthorcenter dot OH and SO4 center dot--
Appears in Collections:
KIST Article > 2026
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE