Full metadata record

DC Field Value Language
dc.contributor.authorKang, Seung Hyun-
dc.contributor.authorKwon, Oheun-
dc.contributor.authorCho, Bo Kyung-
dc.contributor.authorYoo, Seungmin-
dc.contributor.authorWang, Jin Myeong-
dc.contributor.authorChoi, Youngjin-
dc.contributor.authorYoon, Hong Yeol-
dc.contributor.authorChoi, Jungkyu-
dc.contributor.authorRyu, Ju Hee-
dc.date.accessioned2025-12-19T07:00:44Z-
dc.date.available2025-12-19T07:00:44Z-
dc.date.created2025-12-19-
dc.date.issued2025-12-
dc.identifier.issn2366-9608-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/153802-
dc.description.abstractThe functionalization of DNA origami with peptides is a powerful strategy for creating nanodevices for therapeutic and diagnostic applications. A critical but often overlooked challenge is the non-specific electrostatic binding of cationic peptides to the anionic DNA nanostructure, which leads to uncontrolled stoichiometry and undermines functional predictability. Here, the study systematically characterizes this issue and demonstrates a practical purification strategy to mitigate it. It is quantitatively shown that cationic peptides associate with DNA origami in vast excess of their intended binding sites, a phenomenon not observed with anionic control peptides. This non-specific binding is confirmed to be electrostatic and is effectively screened by high salt. To address this, a charge-dependent purification approach is evaluated using polyethylene glycol (PEG) precipitation, showing that cationic peptides require extensive purification (≥7 cycles), whereas anionic peptides need only minimal treatment (2 cycles) to achieve precise loading. Crucially, the study provides definitive functional evidence that a therapeutic peptide (brain-derived neurotrophic factor-mimicking peptide) must be attached via stable, site-specific hybridization to elicit a potent biological response; non-specifically adsorbed peptides are largely inactive. This work provides a set of critical design guidelines and purification considerations necessary for the rational design of reliable and functionally predictable DNA nanodevices.-
dc.languageEnglish-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.titleCharacterization of Non-Specific Electrostatic Interactions of Cationic Peptides with DNA Origami and Their Functional Consequences-
dc.typeArticle-
dc.identifier.doi10.1002/smtd.202501936-
dc.description.journalClass1-
dc.identifier.bibliographicCitationSmall Methods-
dc.citation.titleSmall Methods-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.scopusid2-s2.0-105023970839-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusSTEM-CELLS-
dc.subject.keywordPlusBINDING-
dc.subject.keywordPlusRESPONSES-
dc.subject.keywordPlusIMMUNITY-
dc.subject.keywordPlusGROWTH-
dc.subject.keywordAuthorcationic peptide-
dc.subject.keywordAuthorDNA origami-
dc.subject.keywordAuthorelectrostatic interaction-
dc.subject.keywordAuthornon-specific binding-
dc.subject.keywordAuthorstoichiometric control-
Appears in Collections:
KIST Article > 2025
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE