Full metadata record

DC Field Value Language
dc.contributor.authorWibowo, Anky Fitrian-
dc.contributor.authorSasongko, Nurwarrohman Andre-
dc.contributor.authorPuspitasari, Anita-
dc.contributor.authorVo, Truong Tien-
dc.contributor.authorEntifar, Siti Aisyah Nurmaulia-
dc.contributor.authorSembiring, Yulia Shara-
dc.contributor.authorKim, Jung Ha-
dc.contributor.authorAzizi, Muhamad Junda-
dc.contributor.authorSlamet, Muhammad Nur-
dc.contributor.authorOh, Junghwan-
dc.contributor.authorPark, Jae-Seong-
dc.contributor.authorKim, Soyeon-
dc.contributor.authorLim, Dong Chan-
dc.contributor.authorMoon, Myoung-Woon-
dc.contributor.authorKim, Min-Seok-
dc.contributor.authorPark, Myeongkee-
dc.contributor.authorKim, Yong Hyun-
dc.date.accessioned2025-12-19T09:01:03Z-
dc.date.available2025-12-19T09:01:03Z-
dc.date.created2025-12-19-
dc.date.issued2025-12-
dc.identifier.issn1385-8947-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/153820-
dc.description.abstractHydrogels are promising candidates for sustainable wearable sensors due to their intrinsic stretchability, conductivity, and biocompatibility. Here, we present a gelatin (Gel)-based hydrogel reinforced with a hybrid conductive filler of silver nanowires (AgNWs) and poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS). Strategic crosslinking with glutaraldehyde (GA) provides enhanced mechanical robustness and electromechanical stability. The optimized hydrogel exhibits a working strain of up to 200 % with ultralow hysteresis (<3.5 % at 200 % strain), surpassing many reported conductive hydrogels. Mechanistic insights from Raman spectroscopy and ab initio calculations reveal that glycerol/polyethylene glycol-induced helix-to-coil transitions, together with GA crosslinking, increase molecular flexibility and stabilize the conductive network. As a wearable on-skin sensor, the hydrogel reliably monitors diverse physiological activities, including handwriting, arterial pulses, and facial expressions. Furthermore, integration with a wireless system and machine learning enables accurate motion classification. This study represents one of the first systematic demonstrations of gelatin-based conductive hydrogels with ultralow hysteresis and high stretchability, highlighting their potential for next-generation intelligent and eco-friendly wearable sensors.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleExceptionally low electrical hysteresis, soft, skin-mimicking gelatin-based conductive hydrogels for machine learning-assisted wireless wearable sensors-
dc.typeArticle-
dc.identifier.doi10.1016/j.cej.2025.170741-
dc.description.journalClass1-
dc.identifier.bibliographicCitationChemical Engineering Journal, v.526-
dc.citation.titleChemical Engineering Journal-
dc.citation.volume526-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001627398000001-
dc.identifier.scopusid2-s2.0-105022212090-
dc.relation.journalWebOfScienceCategoryEngineering, Environmental-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
dc.subject.keywordAuthorGelatin-
dc.subject.keywordAuthorUltralow hysteresis-
dc.subject.keywordAuthorSilver nanowires-
dc.subject.keywordAuthorSensors-
dc.subject.keywordAuthorMachine learning-
Appears in Collections:
KIST Article > 2025
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE