Full metadata record

DC Field Value Language
dc.contributor.authorLee, Yeongbin-
dc.contributor.authorChoi, Seyoung-
dc.contributor.authorJang, Seohyeon-
dc.contributor.authorCho, Byeong-Gwan-
dc.contributor.authorJeong, Beomgyun-
dc.contributor.authorKim, Yongsam-
dc.contributor.authorPark, Yoonsu-
dc.contributor.authorJeong, Wooseok-
dc.contributor.authorHwang, Yun Jae-
dc.contributor.authorLee, Hyeonseok-
dc.contributor.authorAn, Boeun-
dc.contributor.authorJeong, Heesoo-
dc.contributor.authorKim, Gyuhyeon-
dc.contributor.authorQi, Dong-Chen-
dc.contributor.authorJang, Jong Hyun-
dc.contributor.authorNam, Inho-
dc.contributor.authorHa, Don-Hyung-
dc.date.accessioned2025-12-22T07:30:13Z-
dc.date.available2025-12-22T07:30:13Z-
dc.date.created2025-12-19-
dc.date.issued2025-11-
dc.identifier.issn2050-7488-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/153833-
dc.description.abstractNickel phosphides have emerged as promising earth-abundant catalysts for the hydrogen evolution reaction (HER), yet most studies have focused on Ni-rich phases (e.g., Ni2P, Ni5P4), where catalytic activity is commonly attributed to metallic Ni surface sites. In contrast, the catalytic potential of phosphorus-rich phases has remained largely unexplored due to synthetic challenges that have hindered access to phase-pure compositions. Here, we report the colloidal synthesis of phase-controlled Ni–P nanocrystals, granting access to four distinct phases (Ni12P5, Ni2P, Ni5P4, NiP2) and overcoming long-standing barriers such as phosphorus volatility and biphasic formation. This synthetic platform enables a direct and systematic comparison across the compositional gradient and reveals a fundamentally distinct HER mechanism at the P-rich end: hydrogen adsorption and evolution proceed preferentially on surface phosphorus atoms, rather than on Ni hollow or bridge sites as in conventional Ni-rich phosphides. Electrochemical analysis and density functional theory (DFT) calculations show that NiP2 exhibits superior HER performance compared to its Ni-rich analogues, despite having a lower electrochemically active surface area. This P-site-driven reactivity uncovers a previously unrecognized catalytic regime and challenges the prevailing Ni-centric model in transition metal phosphide catalysis. Our findings demonstrate that tuning the stoichiometry toward phosphorus-rich compositions not only alters the surface electronic structure but also redefines the identity of the active site. This work positions NiP2 as a prototype for anion-driven HER catalysis and introduces a new conceptual framework for designing non-precious electrocatalysts that exploit metalloid-active centers.-
dc.languageEnglish-
dc.publisherRoyal Society of Chemistry-
dc.titleColloidal phase control of Ni–P nanocrystals reveals a P-site hydrogen evolution reaction mechanism distinct from Ni-rich analogues-
dc.typeArticle-
dc.identifier.doi10.1039/d5ta06219e-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJournal of Materials Chemistry A-
dc.citation.titleJournal of Materials Chemistry A-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.scopusid2-s2.0-105022854201-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusTOTAL-ENERGY CALCULATIONS-
dc.subject.keywordPlusMOLYBDENUM PHOSPHIDE-
dc.subject.keywordPlusHIGH-PERFORMANCE-
dc.subject.keywordPlusELECTROCATALYST-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusPHOTOELECTRON-
dc.subject.keywordPlusSPECTROSCOPY-
dc.subject.keywordPlusNANOSTRUCTURED NICKEL PHOSPHIDE-
dc.subject.keywordPlusPHOSPHORUS-
dc.subject.keywordPlusABSORPTION-
Appears in Collections:
KIST Article > 2025
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE