Full metadata record

DC Field Value Language
dc.contributor.authorDogan, Ebru-
dc.contributor.authorMoeez, Iqra-
dc.contributor.authorChung, Kyung Yoon-
dc.contributor.authorWhba, Rawdah-
dc.contributor.authorAltin, Emine-
dc.contributor.authorHarfouche, Messaoud-
dc.contributor.authorKarta, Mesut-
dc.contributor.authorDepci, Tolga-
dc.contributor.authorStoyanova, Radostina-
dc.contributor.authorKoleva, Violeta-
dc.contributor.authorSahinbay, Sevda-
dc.contributor.authorAltin, Serdar-
dc.date.accessioned2025-12-23T05:30:17Z-
dc.date.available2025-12-23T05:30:17Z-
dc.date.created2025-12-19-
dc.date.issued2025-12-
dc.identifier.issn2366-7486-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/153847-
dc.description.abstractThis work presents a sustainable and high-performance sodium-ion full-cell architecture by combining a core@shell Na0.67Mn0.5Fe0.5O2@Al2O3 cathode with a hard carbon anode derived from cherry seed biowaste. The P2-type cathode material is synthesized via a conventional solid-state method and coated with Al2O3 using a scalable wet-chemical route. Structural and surface analyses confirmed the formation of a uniform Al2O3 shell, which enhanced the cathode's electrochemical stability by mitigating Mn3⁺-induced distortion and suppressing electrolyte side reactions. In parallel, the hard carbon anode is produced from cherry seeds—a low-cost and abundant byproduct—through high-temperature pyrolysis, delivering high capacity and excellent cycling performance. Electrochemical evaluation of both electrodes in half-cell and full-cell configurations revealed favorable sodium-ion diffusion, robust structural integrity, and improved interfacial properties. The half-cell, assembled with Na0.67Mn0.5Fe0.5O2@Al2O3 cathode, demonstrated remarkable cycling stability and rate capability within a practical 1.5–3.5 V window, retaining 94.5% capacity after 100 cycles. In situ XRD studies further elucidated the phase transitions and stability of the cathode during cycling. This study demonstrates a sustainable and scalable pathway for sodium-ion battery development by integrating surface-engineered cathodes and biomass-derived anodes.-
dc.languageEnglish-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.titleInterface-Engineered P2-Type Cathode and Biomass-Derived Anode for Stable Sodium-Ion Full Cells-
dc.typeArticle-
dc.identifier.doi10.1002/adsu.202501668-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAdvanced Sustainable Systems-
dc.citation.titleAdvanced Sustainable Systems-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.scopusid2-s2.0-105024092277-
dc.relation.journalWebOfScienceCategoryGreen & Sustainable Science & Technology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusHARD CARBON-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusBATTERIES-
dc.subject.keywordPlusSTABILITY-
dc.subject.keywordPlusMECHANISM-
dc.subject.keywordAuthorcore@shell-
dc.subject.keywordAuthorHard carbon-
dc.subject.keywordAuthorNa-ion-
dc.subject.keywordAuthorP2 type cathode-
Appears in Collections:
KIST Article > 2025
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE