Full metadata record

DC Field Value Language
dc.contributor.authorPark, Sang Yeun-
dc.contributor.authorKim, Da-Seul-
dc.contributor.authorLee, Ung-
dc.contributor.authorOh, Hyung-Suk-
dc.contributor.authorJun, Yongseok-
dc.contributor.authorLee, Phillip-
dc.contributor.authorMin, Byoung Koun-
dc.date.accessioned2025-12-23T07:00:14Z-
dc.date.available2025-12-23T07:00:14Z-
dc.date.created2025-12-19-
dc.date.issued2025-12-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/153867-
dc.description.abstractSolution-processed multicomponent metal oxides hold promise for scalable thin-film technologies, yet their precursor chemistry is highly vulnerable to ambient moisture and oxygen, leading to premature hydrolysis, porosity, and cracking. Here we present a dual-ligand precursor engineering strategy that integrates citric acid (CA) and poly(acrylic acid) (PAA) within a methanolic nitrate system using poly(vinyl acetate) (PVAc) as a binder. CA provides chemical stabilization against hydrolysis, and PAA moderates stress during drying, yielding dense and crack-free amorphous oxide films under 25–30% relative humidity. As a proof of concept, these stabilized oxides were converted into Cu(In,Ga)(S,Se)2 (CIGSSe) absorbers, which reproduced the morphology, composition, and bandgap grading of low-humidity references, yielding devices with largely recovered efficiencies. By prioritizing intrinsic precursor stabilization over strict environmental control, this work establishes a robust and generalizable framework for moisture-tolerant fabrication of multicomponent oxide films with broad applicability beyond photovoltaics.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.titleSynergistic Dual-Ligand Precursors for Humidity-Tolerant Amorphous Oxide Thin Films in Cu(In,Ga),(S,Se)2 Solar Cells-
dc.typeArticle-
dc.identifier.doi10.1021/acsaem.5c03185-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Applied Energy Materials, v.8, no.24, pp.18308 - 18317-
dc.citation.titleACS Applied Energy Materials-
dc.citation.volume8-
dc.citation.number24-
dc.citation.startPage18308-
dc.citation.endPage18317-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusEFFICIENCY-
dc.subject.keywordPlusCHALCOPYRITE-
dc.subject.keywordPlusCOPPER(II)-
dc.subject.keywordPlusCU(OH)(2)-
dc.subject.keywordPlusCUO-
Appears in Collections:
KIST Article > 2025
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE