Full metadata record

DC Field Value Language
dc.contributor.authorNa, Sunwoong-
dc.contributor.authorJeong, Soojin-
dc.contributor.authorKim, Hyojeong-
dc.contributor.authorLee, Jiho-
dc.contributor.authorShin, Jungkyoo-
dc.contributor.authorPark, Soyeon-
dc.contributor.authorYoon, Dongmin-
dc.contributor.authorHan, Jieun-
dc.contributor.authorKim, Eunwoo-
dc.contributor.authorOh, Yoonseon-
dc.date.accessioned2025-12-23T07:30:15Z-
dc.date.available2025-12-23T07:30:15Z-
dc.date.created2025-12-19-
dc.date.issued2025-12-
dc.identifier.issn1598-6446-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/153869-
dc.description.abstractMany tasks for service robots are complex and require lengthy processes. Task planning methods are widely used to address such challenges, but search-based planners are often inflexible, while learning-based planners do not guarantee feasibility. To overcome these limitations, we propose a hierarchical framework that integrates a knowledge base, a learning-based object-oriented task planner, and a symbolic robot task planner. The object-oriented task planner predicts subgoals, defined as changes in object states, from only a recipe name and a list of ingredients. The symbolic robot task planner then generates a feasible sequence of high-level robot actions using the proposed object knowledge base. Our framework focuses on high-level symbolic task planning and demonstrates generalization and feasibility across diverse recipes and action sets. We focus on cooking as a representative long-horizon domain, where sequential dependencies and embodiment-specific constraints naturally arise. Experimental validation was conducted on 20 representative recipes with 20,000 generated task samples, demonstrating robust performance across diverse cooking scenarios.-
dc.languageEnglish-
dc.publisher제어·로봇·시스템학회-
dc.titleA Unified Framework Integrating Object-oriented Task Learning and Knowledge-based Task Planning for Long-horizon Cooking Tasks-
dc.typeArticle-
dc.identifier.doi10.1007/s12555-025-0524-5-
dc.description.journalClass1-
dc.identifier.bibliographicCitationInternational Journal of Control, Automation, and Systems, v.23, no.12, pp.3637 - 3648-
dc.citation.titleInternational Journal of Control, Automation, and Systems-
dc.citation.volume23-
dc.citation.number12-
dc.citation.startPage3637-
dc.citation.endPage3648-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.description.journalRegisteredClasskci-
dc.identifier.kciidART003266767-
dc.identifier.wosid001632328900013-
dc.identifier.scopusid2-s2.0-105024067561-
dc.relation.journalWebOfScienceCategoryAutomation & Control Systems-
dc.relation.journalResearchAreaAutomation & Control Systems-
dc.type.docTypeArticle-
dc.subject.keywordPlusMOTION-
dc.subject.keywordAuthorLong-horizon planning-
dc.subject.keywordAuthortask learning-
dc.subject.keywordAuthortask planning-
Appears in Collections:
KIST Article > 2025
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE