Full metadata record

DC Field Value Language
dc.contributor.authorJeon, Seongjin-
dc.contributor.authorKim, Kyungsu-
dc.contributor.authorJeong, Goojin-
dc.contributor.authorYu, Jisang-
dc.contributor.authorByeon, Young-woon-
dc.contributor.authorPark, Kern-ho-
dc.contributor.authorCho, Woosuk-
dc.date.accessioned2026-01-13T05:30:04Z-
dc.date.available2026-01-13T05:30:04Z-
dc.date.created2026-01-12-
dc.date.issued2025-12-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/153971-
dc.description.abstractBulk-type all-solid-Li batteries based on inorganic solid electrolytes (SEs) are considered promising candidates for next-generation energy storage systems for their potential to overcome the limitations of current lithium-ion batteries, such as safety concerns, narrow operating temperature. Following the intensive efforts to search for affordable sulfide SEs, recently, chloride SEs are in the spotlight for their better high-voltage stability and potentially lower cost than the sulfide counterparts. However, many chloride SEs exhibiting appreciable ionic conductivity adopt rare-earth metals, which arises the motivation to search for new chloride SEs based on earth-abundant minerals. Herein, Li6−xFe1−xAlxCl8 (0 ≤ × ≤ 0.8) SEs exhibiting significantly improved ionic conductivity of 3.9 × 10−5 S cm−1 at 25°C for Li5.5Fe0.5Al0.5Cl8 compared to Li6FeCl8 (3.1 × 10−6 S cm−1) are reported. The formation of a metastable spinel-like phase was observed for Li5.5Fe0.5Al0.5Cl8 prepared by mechanical ball-milling. Furthermore, its electrochemical properties as a catholyte were examined, coupled with a LiFePO4 cathode active material.-
dc.languageEnglish-
dc.publisherWILEY-
dc.titleLi6−xFe1−xAlxCl8 Solid Electrolytes for Cost-Effective All-Solid-State LiFePO4 Batteries-
dc.typeArticle-
dc.identifier.doi10.1002/sstr.202500728-
dc.description.journalClass1-
dc.identifier.bibliographicCitationSmall Structures-
dc.citation.titleSmall Structures-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.scopusid2-s2.0-105025117978-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusDOUBLE CHLORIDE SPINEL-
dc.subject.keywordPlusIONIC-CONDUCTIVITY-
dc.subject.keywordPlusPHASE-TRANSFORMATION-
dc.subject.keywordPlusCRYSTAL-STRUCTURE-
dc.subject.keywordPlusARGYRODITE LI6PS5CL-
dc.subject.keywordPlusCONDUCTORS-
dc.subject.keywordPlusMN-
dc.subject.keywordPlusLI6FECL8-
dc.subject.keywordPlusSYSTEM-
dc.subject.keywordPlusMG-
dc.subject.keywordAuthorall-solid-state batteries-
dc.subject.keywordAuthorhalide solid electrolytes-
dc.subject.keywordAuthorlithium ionic conductor-
Appears in Collections:
KIST Article > 2025
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE